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solved for the element nodal degrees of freedom as well as unknown nodal
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formulation/algorithm. An example involving a laminated plate is also
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Chapter 1

INTRODUCTION

Multilayer fiber reinforced composites are of interest in a number
of structural applications where nigh strength to weight ratios are re-
quired. An area of recent and continuing interest is the failure analy-
sis of composite laminates. Composites are strongly anisotropic by na-
ture and contain major microscopic inhonogene;tics corresponding to the
matrix/fiber nature of the materials. Therefore accurate and detailed

N stress distributions must be available in order to predict failure of
laminated composite structures.

Most ;nginooring devices are made up of asse-bl;d parts and many of
these are mechanically joined. Even under small deformations nonlinear-
ities often arise in these joints. The nonlinearities arise for in-
stance in contact problems such as bolted connections, shrink fit, or
roller bearings. Sometimes gaps separate various structural components
presenting nonlinear problems which involve rigid body movement across a
gap with subsequent contact of disconnected regions. In many situations
structural components in contact slide relative to one another.

The complicating factor in these problems is the unknown surface of
contact. In many cases, it is important to know the contact conditions

in order to predict accurately the stresses and strength of the 3oint.

Analytic solutions of contact problems are limited to idealized

simple configurations, loadings, and boundary conditions. These solu-
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tions may be applied to design problems with varying degrees of success
depending upon how closely the geometry and loading model the actual
problem. Thus, numerical techniques are needed for solutions of realis-
tic contact problems.

The finite element method will be used to develop aﬁ isoparanctric
multilayer plate element based on a hybrid-stress formulation. The dis-
placement behavior will be characterized by laminate refcfcnce plane in-
plane and transverse displacements and laminate non-normal cross-section
rotations; as a result, the number of degrees of freedom will be inde-
pendent of the number of layers. All components of stress will be in-
cluded.

This multilayer plate element will be used to solve edge cont;ct
problems. A hybrid-stress formulation for the analysis of contact prob-
lems as well as the procedure to locate the surface of contact will be
presented. The contact problem may be either frictional or frictionless
and may involve extensive sliding between deformable bodies.

Chapter II is devoted to the development of the multilayer plate
element. A review of recent work is included in section 2.1. A stiff-
ness matrix is formulated for a moderately thick multilayer plate ele-
ment in soction 2.2. This stiffness is reduced to obtain a stiffness
matrix for thin multilayer plate elements in section 2.3. Section 2.4
describes the formation and evaluation of a 8-node thin multilayer plate
element.

Chapter III describes the hybrid-stress formulation for the analy-

sis of contact problems as well as the solution technique and applica-

tions. A review of recent work is included in section 3.1. The hybrid
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stress functional for contact is presented in section 3.2. The matrix
equations are given in section 3.3. Section 3.4 describes the contact
element and section 3.5 develops the solution technique. Application
and evaluation are included in section 3.6.

Chapter IV is a statement of the summary and conclusions of this

work. This chapter concludes with some suggestions for further work.




g Chapter II

HYBRID STRESS REDUCED-MINDLIN ELEMENTS FOR THIN MULTILAYER
PLATES

2.1  INTRODUCTION
Multilayer fiber reinforced composites are of interest in a number

of structural applications where high strength to weight ratios are re-

quired. A number of multilayer plate elements have appeared in the lit-
- erature, ranging in applicability from thin (lamination theory) to mod-
erately thick (including transverse shear effects) laminated plates
(e.g. [1-11]). These elements are based primarily on assumed-displace-
ment or hybrid- stress formulations, although elements based on other
variational principles have been proposed (e.g. [12-13]).

There are advantages to the use of the hybrid-stress model for mul-
tilayer plate elements. Hybrid-stress elements can be derived which in-
clude individual (independent) layer cross-section rotations (also pos-—
sible in assumed-displacement elements) and individual(independent)
layer stress fields. The layer stress fields can be selected such that
interlayer surface traction continuity and laminate upper/lower surface-
traction free conditions are exactly satisfied; examples of hybrid-
stress elements of this type are found in References (6,10,11]. Ele-

ments in this category are applicable to moderately thick and thick

laminates (i.e. typical thickness to span ratios as high as h/L=0.25).
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Second, by proper choice of the spanwise distributions of the in-
plane stresses, it is possible to derive single-layer hybrid-stress
plate elements which are based on Mindlin-type through thickness dis-
placements (i.e. independent non-normal cross-section rotations) and in-
clude all components of stress, and which are of correct rank and non-
locking in the thin-plate limit [14-16]. ("Locking" refers here to
excessively stiff solutions obtained with some moderately thick plate
elements when applied to thin plate problems.) The characteristic of
g natural invariance can also be achieved for the 8-node plate element

(17]. These attributes carry over to hybrid-stress multilayer plate el-

ements [10,11]; the 8-node element of Reference [l11], for example, is

f" accurate for moderately thick to thick laminates,;is of correct rank and

naturally invariant, and is non-locking when used for thin laminated
plates.

In many applications of laminated composites, the plate can be as-
sumed to be thin and thus governed by lamination theory. Application of
elements of the type in References [10,11], for example, to thin plates
may be considered inefficient. In those elements the number of degrees
of freedom and the number of stress parameters will grow in proportion
to the nunb;r of layers, resulting in increased computation times and
storage requirements for element stiffness formation. This generality
at the expense of significantly increased computation cost is therefore
not warranted. One approach used in References (10,11]) was to kinemati-
cally constrain the through-thickness displacement field so that element

nodal degrees of freedom corresponded to reference plane displacements

and laminate cross-section rotations ——- independent of the number of
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layers. The elements produced accurate predictions for typical thieck-
ness ratios h/L =0.1 and lower. Those "restricted" elements [10,11]
continued to be based on independent layer stress fields and thus compu-
tation time and storage requirements for the formation of an element
stiffness continued to grow with the number of layers. Furthermore, the
use of independent layer stress fields with a laminate displacement
field seems inconsistent.

The formulation presented here rectifies this inconsistency by pro-
ducing hybrid-stress multilayer plate elements for which the number of
nodal degrees of freedom and the number of stress parameters is indepen-
dent of the number of layers. In these elements, degrees of freedom at
a node correspond to laminate reference surface inplane and transverse
displacements and laminate cross-section rotations (i.e. a total of §
dof per node independent of the numder of layers). In order to produce
stress fields in each layer related to a fixed set of laminate stress
parameters, laminate inplane strains are first interpolated in terms of
stress parameters. Layer inplane stress fields are related to these pa-
rameters via constitutive equations. Layer transverse shear and tran-
sverse normal stresses are obtained from the inplane stesses via inte-
gration of the homogeneous equilibrium equations; the constants of
integration are selected to satisfy lower surface traction-free condi-
tions and interlayer surface traction continuity.

This aproach was, in effect, used for the development of a 4-node
hybrid-stress multilayer element in Reference [9]. Results in that
study suggest that moderately—thick (i.e. h/L20.1) laminates can be ac-

curately analyzed.
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The mu *ilayer element behavior, particularly in the thin plate
limit, will depend on the form of the spanwise distribution of the
stresses, just as in the single layer hybrid-stress Mindlin type ele-
ments. Thus, early phases of the present work aimed at the development
of an 8-node multilayer element (with laminate degrees of freedom and
stress parameters) having a spanwise sfross distribution analogous to
the single layer element QH3 of Reference [17]. The resulting multilay-
er element was of correct rank, non-locking, and naturally invariant.
However computation times became excessive (as will be described later)
vhen using the approach of Reference [9] for large numbers of layers;
this motivated the search for an alternate approach for defining a hy-
brid-stress nultiléyor plate eslement. .

In a recent study [18], Spilker has shown that the single-layer hy-
brid-stress elements of References [14-17] can be reduced to thin plate
elements by neglecting the contributions of the transverse shear and
transverse normal stresses to the internal complementary energy. Sig-
nificant computational savings were found while maintaining the ease of
formulating plate elements based on independent transverse displacement
and cross-section rotations.

The present study extends the concepts of Reference [18] to multi-
layer plates. Described herein is a hybrid-stress formulation for thin
multilayer laminated plates with nodal degrees of freedom corresponding
to laminate reference surface inplane and transverse displacements and

laminate cross-section rotations. All components of stress are included

and are related to a set of laminate stress parameters, with contribu-

tions of transverse shear and normal stresses to the internal complemen-

...... AN e etL
------------- - -®

AR SO,

A R i i i ol SR oD M T el i




AR A

8
tary energy neglected. Computation time for the resulting element
stiffness matrix is shown to be essentially independent of the number of
layers.

To illustrate the formulation, an 8-node multilayer plate element
is presented which is analogous to the single layer element QH3T [18].
The 8-node element is naturally invariant, of correct rank, and non-
locking. Results for several example probiems show that the element

converges to the thin plate (lamination theory) solution.

2.2  STIFFNESS MATRIX FOR A MODERATELY THICK MULTILAYER PLATE ELEMENT

The multilayer plate is assumed to lie in the x-y plane, with z = 0
corresponding to the laminate reference surface, located arbitrarily
(e.g. geometric midsurface). The laminate consists of I perfectly-bond-
ed layers numbered bottom to top, with 2 = h , h, ... hys; locat-
ing the lower, interlayer, and upper surfaces, respectively (see Figure
la). Displacement behavior is characterized by laminate reference sur-
face displacements ug, vg, and vy, in the x,y, and z directions,
respectively, and laminate, cross-section rotations, 6, and Gy
(which are assumed to be independent of w), about the x and y axes, re—
spectively (see Figure 1b). Note that inplane displacements are includ-
ed due to inherent material induced bending/stretching coupling in mul-
tilayer laminated plates.

The hybrid-stress functional for multilayer plates, assuming per-

fectly bonded layers and tzact}on continuity on interlayer surfaces, is

given by [10].




(a) layer numbering, interface coordinates

(b) _tl-:rm;;h:th_xckn;s; - displaécnodt; |

- - — e -

LAYER I 4"1

GEOMETRIC ] <

MIDSURFACE LAYER 2
\ LAYER |

Figure 1 Nodal degrees of freedom for the
through-thickness displacement field.
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where g?-[a Oy Tz Oxz Txz °yz] are components of stress,

2?'[‘x €y €z €xy ‘xz ‘yz] are components of "strain" as

computed from displacements via the linear strain—- displacement rela-

tions. Subscripts/superscripts i and n refer to layer i and element n,

so that V,; is the volume of layer i for element n. Tho_gi matrix

relates stresses and strains in the xyz coordinate system and is given

in detail in Reference [10]. The last term in equation (2.1) is a load

term corresponding to transverse distributed load,

p(x,y), acting over

the spanwise area, A, of element n.

The purpose of the present section is to define the form of the

displacement and stress interpolations for a thin-to-moderately-thick

multilayer plate element for which the number of nodal degrees of free-

dom and the number of stress parameters is independent of the number of

layers. Intermediate element matrices and the element stiffness matrix

will also be defined. However, the present formulation serves as the

basis for the development of efficient thin multilayer plate elements

via a reduction scheme analogous to Reference [18]. The reduction

scheme and corresponding elements are discussed in subsequent subsec-

tions.

e m M e e maie e 4t m e ey ® emr e Sam e v W,
- -t ~

........ - .""“:-"" AT
T A e ATt s.\-\ \ .'-'\”’-'-\\ \'\‘\'\.'\ VIS TS TN

Lol afaRas

- v -v7'<

I N N SR
O A




11

The displacements u, v, and w at any x,y,z location of the laminate

are given by

u(x,z.);) = M,(x,]) + 3 :97 (X,;)
‘u(x,zlj) = l/o(x,g) -3 Ox (X, 4)

w (Cx, 3,,3) —«b,(x,?) @.2

Using the linear strain-displacement relations, the inplane strains,

EPi’ for layer i are given by

2} Ju7élx. Ju9nbx

d - Ve y - 36«
| .w../;.a aﬂ./a( } "’&1/“/?301&/6? ' 2.3

>

PIA)
-
"
4gp_£t>
$

-‘.
' 3
The transverse shear strains, gxi, are given by

9:(% .w/ax + 93
Y a”/aa, - 6x (2.4)

é; = X{y'

and the transverse normal strain, f;i. is 2zero. It is understood

that strains in layer i for equations (2.3) and (2.4) are obtained by

evaluating z between h; and h;,;.
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Denote the nodal degrees of freedom corresponding to uo by yy,

SR PR

those corresponding to vo by vo, those corresponding to wo by wo, etc.

V07

(SR TY

The spanwise distributions of uo, vo, wo, 6,, and Gy can be interpo-

v
,‘-'

lated in terms of nodal degrees of freedom by using any of the families

T T
.-. .

of 2-D C* continuity shape functions. As the present multilayer ele-

R _¥

ments will be of isoparametric planform, the x,y coordinates are related

to coordinates {,7 by the relation

]

L -
i-
‘.
b
NE

= Z N M) X4
X ¢ "(g 1) t 2.5)

47 2 Ny (5,71) %44

where the sum extends over element nodes, (xj. yj) are the coordi-
nates of element node j, and the Nj(f.n) correspond to the appropriate
Serendipity shape functions.

We assume here that the shape functions used for the displacements
and rotations are the same and are indentical to those used in the geo-

metric mapping of equation (2.5). Then

(-]
&

4, (2.6)

W

6 %t's

L]
N
.3:
~
ol
-
~
e
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represent the displacement/rotation interpolations, with uoj, Vvoj,

etc. corresponding to degrees of freedom at node j. For convenience, we
define the interpolation vector N and element nodal degrees of freedom,

2., as

2.7

Substituting equation (2.6) into equations (2.3) and (2.4) produces

( f: \ VN 0 o 50‘../“
| i:‘a 0 J"‘/»& o -é‘%; o)
§ = < 5} = a0 o 0 D“ o %
‘;a 2/;3 K o - 73'!‘/‘3 (2.8)
'?,, o ~/ax a% (o) N

?‘» (o] JgAg JH/“& - . Io)

-~

or

-,

2.9)

Note that N = N({,7) and thus derivatives in equation (2.8) will incor-

porate the mapping of equation (2.5) as in all isoparametric elements.
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The stresses g} in each layer are to be expressed in terms of a

set of laminate stress parameters, £, the total number ef which is inde-
pendent of the number of layers (i.e. consistent with a multilayer ele-
ment having laminate degrees of freedom independent of the number of
layers). This can be acconpliphod by wusing a scheme similar to that
used by Spilker et al [9] for a 4-node hybrid-stress multilayer ele-
ment.

The laminate inplane strains are assumed to vary linearly through
the laminate thickness and are expressed in terms of laminate "stress

paranetors".‘g, in the form

£ "f/},‘- ['f, }fb] Bs | (2.10)

In equation (2.10), the subscripts s and b refer to stretching and bend-
ing contributions, respectively. The interpolation natricoa‘z; and
Eb are functions (usually polynomials) of x and y. The assumption of
linear 2z variation of inplane strains is ?onsistont with the displace-
ment distribution of equations (2.2). However, note that the strains in
equations (2.10) are not directly related to the displacement deriva-
tives (i.e. not related to Q}i in equation (2.3)).

The inplane stresses in layer i can be related to Q_via substitut-

ing equation (2.10) into the inplane stress-strain (plane stress) rela-

tion; i.e.




Cﬁ(} ‘Xx?

The matrix Qi is the inverse of the inplane portion of‘_S_i as will be

discussed in more detail later. Note that the inplane stresses in equa-
tion (2.11) vary linearly in 2. The transverse shear stresses and tran-
sverse normal stress in layer i can be related to ‘Q by integrating the

homogeneous equilibrium equations; i.e.

0
i

2Ix4 ) dy (2.12a)

A
s~

n

|
—
U
<I%
x -
N——r

-+
N
v %L

x

0/72 --g (9_"3;) + (J_‘!) d; | (2.12b)

03; = ‘J (1&3 + (31/43') J} (2.12¢)

In general, stresses from equation (2.11) are substituted into equations

(2.12). The constants of integration for each layer in equations (2.12)

are used to satisfy traction—free conditions on the lower surface (con-




stants for layer 1), and continuity of Oxz+ Tyzs and o, at inter-

layer surfaces (i.e. at z = h; using the constants of layer i for i =
2,3...1). Details of these calculations are involved and will be pre-
sented later in conjunction with an 8-node element.

Using equations (2.11) and (2.12), and the general procedure just
outlined, it will be possible to relate the stresses in layer i to B in

the form

.g".a f'/é (2.13)

Note that the stresses satisfy equilibrium as required in a hybrid-
stress element.

Equations (2.9), (2.13), and the interpolation for wo are substi-
tuted into the hybrid-stress functional of equation (2.1), and the fol-

lowing laminate matrices are defined

(2.14a)

[0 o
]

Z H;

G = Z G/ (2.14b)
-t ‘ -~

where, invoking the mapping of equation (2.5) to the £,7 system
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Hi = ff f”fifi [ ‘15"/7 . (2.15a)
gi = f .(, E'..f Q; 1 d5ey (2.15b)

F = ‘('f, ny ] dsclyl

(2.15¢)

In equations (2.15), is is assumed that the layer stress interpolation
matrix, gi, and the prescribed distributed load, p, are expressed as
functions of { and 7 using equations (2.5). Also, |J| is the Jacobian

of the coordinate transformation. Equation (2.1) then becomes

(2.16)

1y Ff

where F is the element nodal force vector. Equation (2.16) is in the
standard férl for hybrid-stress elements.

We also consider the possiblity that additional interrelations

among the‘g may exist which can be expressed in the general form
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(2.17)

RA = o

Inter-relations of this form were first used for hybrid-stress elements
by Mau and Pian [6] to enforce interlayer traction continuities in mul-
tilayer elements. “hey have been used more recently as an alternate
scheme to enforce equilibrium in hybrid-stress elements [19-21], and to
reduce stress fields in single layer hybrid-stress Mindlin-type plate
elements [18]. They could also be used to enforce, for example, partial
equilibrium. In the present multilayer elements, the inter—relations
among B, expressed by equation (2.17), will be used to reduce the stress
field to a desirable form and to satisfy the zero transverse shear
stress conditions at the upper laminate surface.

Following Reference [6], equation (2.17) is introduced into equa-
tion (2.16) via the Lagrange Multiplier method. From the stationary
condition of the functional it can be shown that the stress parameters

are related to nodal degrees of freedom by

1T

A = - 2 4 (2.18)

and the element stiffness matrix is given by

(2.19)

A-
where H 1 is the augmented matrix
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A - - - - -
H' = H‘-}:I'ST(RH/ET) RH” (2.20)

The formulation just presented produces a multilayer plate element
having nodal degrees of freedom and stress parameters which are, in num-
ber, independent of the number of.layers. Per the studies of References
[9, 10], a multilayer element of this type should provide reasonable
predictions for thin to moderately thick laminates; i.e. for typical
thickness to span ratios of h/L = 0.1 and lower.

In early phases of the present effort: 8-node elements of this type
were formulated. Despite the fixed number of stress parameters and no-
dal degrees of freedom, it was found that computation times to form k
grev excessively with increasing numbers of layers. This was found to
be due, to a large extent, to the complexity of &xzi’ o i, and
azi from equations (2.12) and their contributions to H and G (equa-
tions (2.15)). As a result, it was decided to restrict attention to
thin multilyer laminates (i.e. h/L < .05), for which most applications
were intended, and to pursue a redyced formulation similar to that re-
cently used for single layer plates by Spilker [18] which allowed for
significant savings in computation times for k. The reduction scheme

and corresponding element matrices are described in the next subsection.

@ te Sata ettt L
PN WP S A P S S,
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2.3  STIFFNESS MATRIX FOR A THIN MULTILAYER PLATE ELEMENT

In a recent study [18], Spilker has shown that a hybrid-stress for-
mulation for single layer Mindlin-type isoparametcric plate bending ele-
ments can be reduced to provide computationally efficient isoparametric
thin plate elements. The elements utilize independent interpolations
for transverse displacement and cross—section rotations, and include all
components of stress. It was shown that the contributions of transverse
shear stress and transverse normal stress to the internal complementary
energy (i.e. tho_g_matrix) could be neglected for thin plates. The re-
sulting elements were found to converge to classical thin plate theory
solutions. This reduction also allowed use of an alternate algorithm
for stiffness matrix calculation which produced significant savings in
computation time. This reduction is -developed for thin nulfilayer
plates in this section, and an efficient implementation for stiffness

matrix calculation is given.

2.3.1 Definition of the Reduced Functional

In order to define a reduced hybrid-stress functional for thin mul-
tilayer plates, it is necessary to consider the functional of equation
(2.1) along with the assumptions/ interpolations of the previous sec-
tion. Of particular interest are the through~thickness distributions of
stresses gf and strains from displacements, 2}, and contributions to
each term in equation (2.1) which might be neglected for thin plates. A
functional will then be defined which is valid for thin multilayer
plates and a computationally efficient implementation of this functional

will be presented.
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Recall that inplane strains g;i of equation (2.3) are of order
Zz, that the transverse shear strainllgti of equation (2.4) are con-
stant in 2, and that the transverse normal strain ?Ei = 0 for all
layers. Per equations (2.10) and (2.11), the inplane stresses api
(i.e. ‘gpir-[oxi cyi cxyi] ) are of order z. Then via
equations (2.12), the transverse shear stresses (i.e. ‘gtiT -
[°xzi cyzi]) will be of order 22, and the transverse normal
stress, azi, will be of order z3.

.

Now consider each term in equation (2.1) as plate thickness is made
small. The final term corresponds to nodal loads due to distributed ap-
plied loads and is not affected by plate thickness. Consider the second
term in equation (2.1). Contributions of the product‘gpirgbi,
integrated through the thickness will be of order nd (for present pur-
prses, h may be considered as a normalized thickness; i.e. plate thick-

ness divided by a typical spanwise dimension). Likewise the coatribu-

tions to the second term in equation (2.1) of the product

‘gtitgti (transverse shea- stresses/strains) will be of order

h3.  The product gzirgii does not contribute since ?zi-O.
In view of the above contributions, no reduction of the second integral
in equation (2.1) is possible when h is small.

Reductions of the first integral of equation (2.1) are possible for

small h. For a layer having a general fiber orientation, the material

property matrix will have the following form:
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Expressions for the Skli are given, for example, in Reference [10].

To examine the effects of h, it is convenient to expand the first term

in equation (2.1) as follows:

o i i v 0 i i (Sw)t i
zJ{ gngv=§j [%7 s '+ {sz, %
Yo, | Vonl Ss8
; ] N ()2
+ <% LSis Sas Ssc ] Q? + Saz (03) (2.22)
+ ‘?:;T §é' ,g‘,f'] C{V
where
Sn Sr& SLG |
s ; = gll 521 fsz‘
Slg st S“ (2.238)
S«-s Sss

------
‘‘‘‘‘‘‘




........

Referring to the orders of h in equation (2.22), the first term is

of order h3, the second and third terms are of order hs, the fourth

term is of order h7, and the fifth term is of order hs. In addi-

tion, each of the second through fifth terms is related to the same set

(or a subset) of B as the first term. Thus, for small h the second

through fifth terms in equation (2.22) can be neglected compared with

the first term.

- It should be noted that it is possible to further divide the pre-

ceeding discussion into contributions due to stretching and those due to

bending. Although the contributions of stretching and bending differ by

a factor hz, the relative contributions from each of the terms in

equation (2.22) is as described above and the conclusions drawn above

are valid.

With the reductions described above, the hybrid functional of equa-

tion (2.1) can be rewritten for thin multilayer plates in the following

form:
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In summary, the functional of equation (2.24) for thin multilayer lami-
nates differs from the general laminated plate functional in equation
(2.1) in that contributions of transverse shear stresses and transverse
normal stress to the internal complementary energy have been neglected.
This is analogous to the reduction performed for single layer plate ele-
ments in Reference [18]. Of significance in practice is the fact that
it is exactly those eliminated terms which contributed significantly to
stiffness computation time in the non-reduced element. As a3 result of
~ this reduction, a modified, more efficient algorithm for stiffness cal-

culation can be used. This algorithm is described next.

2.3.2 Definition of the Element Stiffness

An efficient algorithm can be defined for stiffness formation for a.
thin multilayer plate element based on the reducéd functional in equa-
tion (2.24). We begin by assuming that the same order polynomial is
used to interpolate each component of inplane strain, both stretching

and bending contributions(see equation (2.10)); i.e.

€= af r3ape.
2B + 3448 (2.25)
€xy = 2 fis + 524

vwhere 3 is 8 vector of polynomials, e.g.

2 (2.26)

P
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Using the notation of equation (2.10)

X a 34 ¢ o o @
! P=12 2 & 3¢ 0o o (2.272)
2 2 22 ¢ & 34
and
éT - La: B: E;‘ E;‘ ésT &:‘J
(2.27b)

The inplane stresses in layer i, gpi, can be related to § through
equation (2.11). Note that modifications to the strain distribution in
equations (2.25) can be achieved by introducing the necessary interrela-
tions in the form of equation (2.17).

The transverse shear stresses do not contribute to the first inte-
gral in equation (2.24) (which will lead to the H matrix), but do con-
tribute to the second integral in equation (2.24) (which will lead to
the ELlatrix). To define gki for layer i, equations (2.25) are sub-
stituted into equation (2.11), and the result substituted into equations
(2.12a) and (2.12b). The constants of integration for layer 1 are used

to enforce the 2zero traction condition at the lower surface: the con-

stants of integration for layer i are used to satisfy the traction con-




tinuity at z = h; between layers i and i-l (i>1). After some manipu-

lation, it can be gshown that oxzi and cyzi are given by

. i : ; (2.28a)
o’x'% = Tmafy + Tizea s ¥ Tiass ps
i : i
"'Funﬁz + Fia 18,3 + Fusss Be
<f}3 - To R TasuzfBs -T;;zséﬁr
+ Fisiz Pz + Fi'sze B4 + Fiiaa.i és (2.285)

where the coefficient vectors are functions of x,y, and z, and are given

by

Tuam = [thi- 31040 + Oniei-h) Qe + (i, -, ) B

o+ Lh.-hz_)Qig]%/a-x '

+ [U\:-g)éui. Flhiei=h) Qo + (g - hin) Qa

ot (ho-he) Qua ]/

. (2.29)

ot =i (= 7) Qg+ (n5,-h2) Gt + (2 -h2)6p

b * Ch-h) Qg ] %y _

+1 { (hi- 3) Ot #hid -hi) 86 + (hi-z -‘\‘:1) QL.'-'\L

P cm-h:)&l_,',]%/,,

Inplane stresses zpi and transverse shear stresses Zti are

substituted into the functional of equation (2.24). Also, Epi and

T N R A AT S R AL WA e S




------------ A e A - SA LA W Ak Mall il el S b bl Sl dad Sl Al Sl Ad hANE TR AN VRN S A S ST AR P WL DAL SR oSS BT A A

27
gti can be related to nodal degrees of freedonm, 9, as described ear-
lier, and substituted into equation (2.24). With these substitutions,

I, of equation (2.24) can be put in the form

- T - T Tz
‘rtm—f‘%%éljé, B 4% +3—':} (2.30)

as in equation (2.16).

For the present thin multialyer plate element, however, the matri-
ces H and G can be defined in a more convenient fashion. To facilitate
these definitions, we assume B are ordered as in equation (2.27b) and g
are ordered as in equation (2.7). We then define the following inte-
grated vector products (note that the integrals are performed in £,7 and

da=|J|dédn):

g .-.S &T% d4A (2.31)
An
and
e[ dNdA de [ &7 W dA ds=[ & 44
An An An 7
. [ 24 nd4 Y [ od 2N YA
2{4-4{ FY Q'Jﬁx .\xd‘ % / < %'J
An An An (2.32)
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In addition, we define the following "material parameters" which come

about in the through~thickness integrations, summed over all layers:

T

Au' .f

x|

(hi~| - h')Q;J.

I 3 ) ¢
Dlr.!.’-' Z '|§ U\:“ ‘l'\; )@!L

A I . ;
By = Z (hie-m) [£ Chivi +h) - hypy, [ Qe
A T, 2 .
Dut= Z zChin-hi )[g (hiw® v hig i + h?)

~(hisi +hi ) hges ] Qlil

With these definitions, 11 is given by

(2.33a)

(2.33v)

(2.33¢)

(2.339)

-(2.33e)
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: € d ]
B2 Ead Symmetric
H = Esd Eud €@ _ (2.34)
! Ev¢d Eud Ewgd Ewd
BsQ Euwd Esed E4sd Es@
Ewd Eud Exd E4d Exd Esd |
where E;; are terms in the symmetric, positive definite matrix E given
by .1
rAu s)lnm&.’*r\lc
Bn Du
E: {Ae Be Au
B: D Bz Dz (2.35)
Ay By A By Ass
|65 D3 Bn Dz Biy Dy

The inverse of H (needed for k) is then given by [23]):




- (B/zg-f&;(gfgzﬁ +8/3 d4s)
~(Dizel +Dacl * Dlz._;‘_(7 7"5/31(4)

................
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TE."‘ Q" s«rmmeTv\a _(2 .36)
B end
exd’ L4 E57¢
W= ledd? edd el Eae ¢
59" Exg'  Eef  ESQ gl
wp oy &€ Wt ar g
where E;;~! are terms in the matrix E;l.
The matrix G can be defined as
(mdp + Ay 4 ) (Ands + Ag £2)
(Bnds +Bisls) (Bads + Biss;)
ﬁ; (Allit *A”!ﬂ) (Aué +A‘4é)
(1. 4: + B dy) ( Beady + Basct)
(Ands + Assds) (Asds + Asdt)
| (Binds +B3s 4) (Bixls + Bs530(2)
(é. ;(5-'7*5/34} +9:z o9 + 3132(4)
(Duds +Disets + Duady + 5,54)
(8 ds + Baody + Brsy + Buudl)
(6)1 0{5 + Dzai: + Dn £ + Dz;a(&)
(Bis s + 835 + Bady + Bugsy)
(Bods + Bogy + Boyty + Bndds)
(2.37)

.........

S
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‘(Bzzﬁ(j + ﬂz;o/z 7 6’220/7 4’3@)
—(Z)zzo/j +Dz3o(z 7"&2:’(7 -f‘pz.a’é)
—(Bezds + 8330(1 +5za % +»§33/4)
-(D:,gg\_é-/-pgaévhbz,s’,/z + Dssg(f)

(B1 G4 Bsdds r By oy + Bz o)

(Du z +)I=?'_(g #D,)/e{} * 07?2./,7)
”

/E/z/z +43_3 +é‘;z/¢ +£23"/7)

(D, A2 + Dazols + D,zgg + Dzs,,])
(8/3/2 t 8535} +8’3"("f’/;33’(7)
(D3 K: + Dsaoé'fbb od + 0330(7 ) ]

Note that the ordering ofigL(equation (2.7)) used to define G is conven-

ient but not conventional. In practice, g‘will be ordered

T’L”o/ Yoy Wor Exu ‘9}// Us, Voz Wa:_ 9’@ "'J

£

(2.38)

and.torns in G from equation (2.37) will be assigned to the proper col-
umn location corresponding to equation (2.38).

In most applications of the present thin multilayer plate formula-
tion, additional interrelations among the § in the form of equation
(2.17) will be needed. For example, the stress field resulting from the

strain field of equations (2.25) will contain complete polynomials in

order to preserve natural invariance [24]. The resulting thin plate
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constraints (to be discussed in the next section) may be excessive, and
thus a reduction of the stress field (which preserves invariance) may be
necessary. Such a reduction could be put in the form of equation
(2.17). As a second example, it is noted that the stress field used for
the present thin multilayer plate elements satisfies equilibrium, satis-
fies lower laminate surface traction—free conditions, and satisfies
traction continuity on interlayer surfaces. Recall that the preceeding
traction conditions were satisfied using the constants of integration in
equations (2.12a) and (2.12b). If the inplane tractions on the upper
laminate surface (i.e. Oyp and oyz) are to be set to zero, this up-
per surface condition must be enforced by introducing interrelations
among the § in the form of equation (2.17). These two kinds of stress
field reductions will be illustrated later in the development of an
8-node element.

With H, G, and R defined as just described, the element stiffness
can be defined by equation (2.19). The major computational advantages
brought about by the reduced formulation are summarized in the follow—

ing:

(a) Perhaps the most significant computational saving results because
the only layer dependent operations in the formation of k are the defi-
nitions of the constants in equations (2.33). These operations are so
insignificant that there is no real increase in computation time from 1

to 100 layers. In effect, computation time is independent of the number

of layers.
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(b) The area integrals in equations (2.31) and (2.32) can be efficiently
evaluated numerically. Only the lower triangle of ¢ (equations (2.31))
need be evaluated. Also, if desired, the integrals could be evaluated

analytically since no |J| will occcur in the denominator.

(¢) The calculation of §;1 would normally involve a system of the or-

der of the number of B. Instead, the definition of 5-' by equation
(2.36) requir-'s inversion of a symmetric 6x6 matrix (5) and inversion of
a symmetric matrix Qﬂ) which involves approximately one—sixth the number

of B s.

(d) The "cost" of items (b) and (¢) is the more complicated stiffness
expression in equations (2.19) and (2.20). Since the constraints in
equation (2.17) d§ not involve equilibrium, they are generzlly few in
number compared with the number of B's. Thus R contains many zeroes,
and operations involving R can be streamlined to avoid most multiplica-
tions by zero.

Illustrative comparisons of stiffness computation times for an

8-node element will be given later.

2.3.3 Constraints in the Thin Plate Limit

In the earlier study of single layer hybrid-stress plate elements
(19], it was shown that the reduced thin plate element was identical to
the nonreduced (moderately thick) plate element in the thin plate limit.
Thus, the performance of the thin plate reduced element will be guided

by the thin-plate-limit constraints of the nonreduced element.
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The same holds for the present multilayer elements: the reduced

thin multilayer plate element will be identical to the nonreduced multi-

layer element in the thin plate limit. The thin-plate-limit constraints

on the nonreduced element are enforced for all plate thickneses on the
reduced thin plate element. If we denote by:§1 the transverse shear

stresses integrated through the thickness and summed over all layers,

then the thin-plate-limit constraints of the nonreduced formulation are

J( éér[* dA =0 i St FO (2.39)
An

Equation (2.39) represents weighted, integrated, Kirchhoff-type con-
straints. The form is analogous to the constraints for the single lay-
ers elements of References [15-18]. Thus, by analogy with the single
layer elements, nmultilayer elements of the present type which are based
on a fixed set of (laminate) stress parameters should have spanwise
distributions of 5;2 and.;;; which are identical to those of the
corresponding non-locking single layer hybrid-stress plate elements
{19].

In the reduced multilayer thin plate element, the constr;intsvof
equation (2.39) are imposed for all plate thicknesses. If the nonre-
duced element is nonlocking in the thin plate limit, the reduced element

will converge to the lamination (thin plate) theory solution regardless

of plate thickness.
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2.4  FORMATION AND EVALUATION OF AN INVARIANT 8-NODE THIN MULTILAYER

PLATE ELEMENT

2.4.1 Element Displacement and Stress Interpolations

To illustrate the formulation of a thin multilayer plate element
based on the reduced formulation of the preceeding section, we consider
an 8-node multilayer plate element as shown in Figure 2. The 8-node el-
ement has been selected in view of studies of single layer hybrid-stess
(Mindlin-type) plate elements, wherein it is shown that a nonlocking,
naturally invariant 8-node element of correct rank can be developed
[18]. That element, denoted QH3 in Reference [18], has served as the
guide for a multilayer element with independent layer displacement and
stress fields [(11] and a reduced thin single layer element [19]: and
will guide the development of the present 8-node thin multilayer plate
element.

The displaconant/ratation interpolation, and the geometric mapping
(since the element is isoparametric) used for the 8-node element is the
standard 8-node biquadratic Serendipity . shape functions (expressed in
the {,n system). The shape functions N;({,7), i = 1,2...8 for equa-
tions (2.5) through (2.7) can be found in most texts on finite element
methods. With five degrees of\:roedon per node, the present element has
40 dof, independent of the number of layers.

The stress field for our model single layer plate element, QH3, was
obtained by starting with complete cubic polynomidls in x,y for each of
the inplane stresses. The stress field was then subjected to the con-
straint that o, be independent of x,y.

To produce the analog multilayer thin plate element, the strain in-
terpolation vector, A in equations (2.25) should be a complete cubic

polynomial, i.e.

DN _.-‘_--'_-."‘-.'_..’. S '\-._‘. .--.‘-\ o e ._‘...‘- "’ \-.\v-." AN | AN L

a0,




NS S8 et M i I A A AR A

AR

36

(x;.y;) COORDINATES
OF NODE | |

- _.,..-.'\- 4" e \:-._

* -
| SN WP A

Figure 2 C}onifry and nunscrin; conventions for the 8-node
pultilayer element.
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> woo 3 ¥ 2 .’j; (2.40)
L1 X gooxT xy gt X; X3 7

N

As @ result, the unconstrained stress field contains a total of 60 B 's,

X with

/?/T=L/,, fa L /,,,./
B Lpn fre o o]

’

(2.41)

/

s Lps frn e foao ]

-—

Given the N:({,7) and s, the H and G matrices can be formed.
~) ~ ~ -

The 60 8 stress field resulting from substituting equation (2.40) into

- equation (2.25) must be reduced to correspond to QH3. In particular,
..
e the distribution of T, given by

- _ - — (2.42)
: T3 =~ ~ 2y
¥ 97

must be independent of x and y. Since o, is linear in x and y, this

produces two constraints as follows:
é [(/h'*/’/h') [é (4.'” +A/)"/)r-r/]
/=l
[3@::(57 + 2 0;;/‘-"3 t+ 362.:1',327 + Zﬂ{;/jzz -7'-3@/3’/31-7

o + o?ﬂs;a pes + d)é'/gq +é}2;/519 + @:;/4?}
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- #/#hivy -hi)l5 Chist +hiy i +hi?) - Chinithi ) hzﬁ J
13080 + 20080 + 36 a1 + 2Q5eBar +380s B

+2Q3pes + Qafin + Qaz Bsa + Qas Bs1 f} =D

2 (i +hi) L3 thiss =)~ b, ]

i (2.43)

{ &f\ﬁs r20i3B1 + Qua fag T2Qusfar + Qs fas

+ ZQs;/sﬁ + 3&;,6.,, * 3@z Bso T 5&;,3 Aso f
FLECh h) 13 (hiu? thihi + h2) = Chivthi Dhge ]
1 8ufg + 208 Bits QuaBac +29055837 + Qufiey

+ ZQ., ﬁﬂ + 5&];#30 + 3&32 /440 + 3&;5 /S“ }] =0
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In addition, we require that Oy, and Oyz be zero at the upper
laminate surface. Since oy, and o Oy, 8re complete quadratic polyno-

mials, this produces a total of 12 constraints, as follows:

‘Z {au ﬂz -J-Q.,,lﬁg + Q'&f&z 'f-@zq/.{a.i +Q13/£42 +®93 ﬁ‘éﬁ}
+2<hw“'h) iﬂu/"nz*‘ ©|-3,B|3 +&nzfgz 4—Qasfis+
‘3(55" + Qaslss,s ?] =0

z | Q,,lé4+Q.5/@s+Z&:z/>zq +azs,sa, - Zg,,/%ﬁggs/qs}
.,.z(hu,.*-‘\ ) ZQH {314 +@sllgl§ -/-?lelﬁsqv +@32,/43$
+ 2@'3/954 + 4153/55}] =0

ZZ?@,, T f'f&dﬂé f‘alzngS'*ZaZ.B/gzé -f—&,gﬂ% +2a33/94‘}
(h w *h )5&11 rs '*"202'3/5/6 +d212/3$' "“2@2.3/534
‘f‘QJﬁg +Zc.)33ﬂsg /Z] =0

/Z L’//’él:,;/ﬁ(7+a/5"/7+0,7{/52_77" 672;;/5:_9 -+ @,5'/541./. 0’; /4‘?/}
+-L(hl'+l+‘h.)3 H/%,?""@ISAI"P aIJ./Sai.}szsﬁs?
+ @f3/557 + @asﬁs7 }] O

z[{a“/&w 3&:3/3:6 *alz,dé? *3023,550 + @/3/547
+ 36153 /350}"*" Z (hin "’h ) {&o /5171" 3@!3/520 +
@nz/ﬁgq ¢ 34sa pa0o+ &,3/9;7 + 3Q 59/660’2 =

- é [{&/5’/41’ @25,322 +G33/542+414/35+ ﬂzz ﬂzg
- +&z3/3,.3f 3 (h,+, +h; ) /d:s/ﬁu. + @23,530. +4a;ﬂ5-7_
+-@1z/$,3 + &uﬂas + Qa3 /)’5‘3 ] =0
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: + 2w +hi) 380 g7+ Qi+ 3Ri:fsy + R4
+ 3@ ,',«7/557 + Q33 fss f] =0 (2.44)

2[{1-@/3/54.1- -2@:3/324 +—-2Q3/91+ -f-d,z s 'f‘@zz fas
+ @zsﬁ4§f + L (/),,»/ +/7 ) {2019/314'/- 2@83%34
40233,8547‘- @/z'/fzs "'@2/‘35‘ + 023/55}] Q

? [;’2:9 sT Q25/Z$*a'33/5¢5 7 ‘2012,6@ + Z&zzlﬁa, +40z5/546;
+5(hin +h;) { ,5/4:5*- Qa3 pas + ass,éss * 22 Ay,
+52.Qz£/$ae+ -#Q-S/»’b}} o

2[{5&@ 57+ 3 z@zéﬂn* 3053/;’:47'/' a/z/lrf' Ozz /a?
+ Rz’ /.54g}+- z(h.“-)—h ;j&lSﬂl?"‘ 3023/637 + 3@53/"57
* leﬁls + Qll/ggf + Q15/53’2]= o

Z[(Q:a ﬁyi—-@zs ,é;w'f' st/ﬁq-l' aw.. ,51 ~+ Qz,_/‘)g‘)'f' @25(947}
+4 (i +hi) {4,3 Big *+ (Q:.g/g,-»;'f' s P + @i'fn
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Equations (2.43) and (2.44) represent 14 interrelations among the
B's which can be put in the form of equation (2.17) and thus define the
R matrix. If we consider these interrelations as reducing the effective
number of B's, we can say that the piresent element has a total of 46

B's. In future discussions, we will refer to this 8-node thin multilay-
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er plate element as MQH3T.

Element MQH3T possesses correct rank, independent of the number of
layers. It is also naturally invariant. As it is based on the reduced
formulation of the previous section, it should be expected that MQH3T
will converge to lamination theory solutions, and that convergence be-

havior will be like the single layer element QH3 [18].

2.4.2 Element Stiffness Computation Time
Computation time (on an IBM 370/168 using double precision) for tﬁe
stiffness matrix of MQH3T is 3.38 seconds, essentially independent of
- the number of layers. A breakdown of that time is given in Table 1.

& The largest single block of time is for the final matrix multiplica-

tions. The next largest block is the time to compute L,




=) TABLE 1

%L Computation Time for the Stiffness Matrix of Element MQH3T

OPERATION : CPU (secs)
-
- Zero/Initialize Matrices 0.034
[
N Evaluate area Integrals in eqns.
(2.31) and (2.32) (Needed for H™
- and G) Using a 4x4 Gauss Rule : 0.124
5 Form ¢~ ! (eqn.(2.31) and E7!
- (eqn. (2.35)) . 0.012
Ao
Form H™1 (egn. (2.20)) 0.843
: Form G (eqn. (2.37)) 0.559
g Compute x=GTH lg - 1.810
TOTAL 3.382
2 Some comparisons with computation times for other element stiff-
nesses are useful. Early attempts to produce a non-reduced 8-node mul-
5: tilayer element, hereafter denoted MQH3, having fixed B's and degrees of

freedom resulted in stiffness computation times of 27.9 secs for 1 lay-
er, and 109.4 secs for 3 layers. This is what motivated the study of a
reduced formulation. The 8-node multilayer element MLPQH3 of Reference
[11] having indepand;nt layer stress fields and independent layer dis-
placement fields requires 30.4 secs for 3 layers (note——less CPU time
than MQH3). Finally, the single layer hybrid-stress 8-node plate ele-
ment (bending only) based on a reduced formulation, QH3T, of Reference

[18] requires 1.8 secs. These comparisons illustrate the computational

LA AN

advantages of MQH3T.
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2.4.3 Example Problems and Numerical Results

2.4.3.1 Cylindrical Bending of a 3-layer 90/0/90 Cross-ply

The problem considered is a 3 layer 90/0/90 cross-ply (8 measured
from the x-axis) plate of infinite length in the x-direction, length L
in the y—direction, simply supported at y=0,L and subject to a sinusoi-
dal distributed transverse load (uniform versus x). Mesh and boundary
conditions are given in Figure 3. Each layer is of equal thickness,
h/3, and layer -atoriai properties are Ej1=25x10¢ psi., Epp=10¢psi.,
¥12=-25, v33=.25, Gyz~.5x10* psi., G3=.2x10* psi. This problem
has been selected because an elasticity solution exists which is valid

for all laminate thickness ratios [24.

Quantities of interest are the transverse displacement w, the
through thickness distribution of in-plane normal stress oy at the
plate center (y=L/2), and transverse shear stress, Oyzs at the bounda-
ry (y=0).

Results will be ' presented in terms of the following normalized

quantities.

W = lOO E;_Z_ h’VO
gL

o (2.45)
% = I

q;N
=0

The quantity qg is the magnitude of the distributed sinusoidal load.




(a) top view
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(b) side view|
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Figure 3 Problem definition a )
gure 3 n defini nd mesh for the i i
bending of a semi-infinite plate under sinusoidalcfz::?;;c‘l
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For a thin laminate the linear through thickness inplane displace-
ment field assumed in MQH3T is adequate. Convergence of the center
transverse displacement normalized by the exact value, [24] for a thin
(h/L=0.01) laminate is shown in Figure 4. The behavior of the multilay-
er compcsite plate element with complete stress contributions (MQH3) is
compared with the reduced thin multilayer plate element (MQH3T) which
excludes the contributions of transverse shear stresses and transverse
normal stress to the internal complementary energy (i.e. the H matrix).
The two elements converge in a similar manner and both give very good
results with element MQH3 converging only slightly more quickly than
MQH3T: this is because the results are normalized by the exact solution,
rather than by lamination theory.

For thin laminates, the performance of element MQH3T is essentially
identical to the element MQH3. As thickness ratio, h/L, increase; the
more general element MQH3 is necessary to produce accurate 9redictionst
To compare the range of applicability of MQH3T and MQH3, plates having
thickness ratios in the range h/L=0.01 to h/L=0.25 have been analyzed
‘using a three element mesh (conver;ed per Figure 2). The.results ob~-
tained for the center transverse dilplacc-ent,'az are given in Table 2
for element MQH3 and in Table 3 for element MQH3T. Element MQH3 produc-
es accurate predictions of w over i wide range of thickness ratios from
thin (h/L=0.01) to thick (h/L=0.25) laminates. 1In Table 3, the predict-
ed 3; using element MQH3T does not increase with increasing h/L. This
is consistent with lamination theory (as expected), which gives poor
predictions of center transverse displacement f;r values of h/L>.01.
Note that lamination theory produces a value of w=.50966 for this prob-

lem, in essential agreement with the MQH3T results.

------
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TABLE 2

Effects of thickness ratio, h/L, on the predicted center transverse
displacement of element MQH3 for the cylindrical bending of a 90/0/90
cross-ply for a 3 element mesh

TE h/L (we) exact ("c)predicted predicted/exact
-
0.25 3.0233 2.8872 1.047
0.10 0.9278 0.9333 0.994
0.05 0.6160 0.6167 0.999
0.0375 0.5689 0.5702 0.998
0.01 0.50906 0.5133 0.992
TABLE 3

Effects of thickness ratio, h/L, on the predicted transverse
displacement of element MQH3T for the cylindrical bending of a 90/0/90
cross-ply using a8 3 element mesh

h/L o) exact (wo)predicted predicted/exact
0.25 3.0233 0.50104 0.1657
0.10 0.9278 0.50123 0.5402
0.05 0.616 0.50123 0.8137
0.0375 0.5689 0.50122 0.8811
0.01 0.50906 0.50123 0.9846

In the range h/L>.01, MQHE3 is clearly the more accurate element
since the contribution of transverse shear stresses and transverse nor-

mal stresses to the internal complementary energy have been retained.

However, as illustrated earlier, computation time for‘h of MQH3 grows
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RN excessively with increasing numbers of layers. Thus, use of MQH3 for
thin plates is not appropriate. The reduced element is clearly the bet-
p ter element for h/L<.0l because of the significant savings in CPU time
and the fact that there is no loss of accuracy within the range of h/L
to be considered here (thin plates). Therefore only the reduced element
will be used for subsequent tests.

The prediction of spanwise distributions of stresses can be illus-
trated using the 90/0/90 example problea. Spilker et al. [23].estab-
lished the existence of optimal sampling points for hybrid-stress ele-
ments. Briefly, approximate strains §g approach the exact strains Dy,
(where u are the exact displacements and D is the differential operator
o matrix corresponding to the linear strain-displacement equations) in a
weighted least squares sense. Owing to a property of Gauss quadrature,
the Gauss stations corresponding to the Gauss rule which just integrates
the stress field o=P@ are the optimal sampling points.

To examine the predicted spanwise distributions, it is convenient

to consider the (normalized) moment (from ay) and shear force (from

Oyxz) distributions given by:

FL L

(2.46)
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The present element MQH3T is based on a single layer element QH3
[17]. Evaluation of the single layer elemrnt determined that conver-
gence of M at nodes is in general somewhat better than at the 2x2 Gauss
stations while the results obtained for Q at the 2x2 Gauss stations are
extremely accurate, Using element QH3 as a guide, results are plotted
in Figures 5 and 6 for M and Q for a thin 90/0/90 plate, h/L=.01 and us-
ing 3 elements. Results for X are plotted versus y along the left edge
of the mesh. The prediction of M is reasonably accurate at the nodes
and center of each element. Results for‘a are plotted versus y along a
line which passes through the 2x2 Gauss stations. The predicted distri-
bution of Q is poor on a pointwise basis but the optimal sampling points
corresponding to the 2 point Gauss rule are evident.

The through thickness distributions of Iy at y=L/2 and transverse
shear stress oy, near y=0 for thin laminated (h/L=0.01) are shown in
Figures (7a-7b). A 3 element mesh is used and the lamination theory so-
lution is also shown. The predicted distribution of %y at y/L=0.5
agrees exactly with the lamination theory solution (Fi;ure 7a). The
predicted distribution of Oyz calculated at the 2x2 Gauss station

nearest to y=0 agrees very closely with lamination theory, Figure 7b.

2.4.3.2 Angle ply Laminates under Transverse Loading

The final example problem considered is a 2 layer laminate of angle
ply (28) contruction, subject to a uniformly distributed transverse load
(see Figure 8).‘ For present purposes, only square plates are considered
so that a=b and a uniform NxN mesh is used; note that the entire plate

sust be modeled since fiber-orientation induced stretching/bending

ST e
AT AT et - Nl Tl WL A LAl A,
- ~ w e PR . -
....... MR IR A I » MO atat e e Tet et .

. »
A LA, ] LIPS WL P W S a2




T

50

y/L

s thin
!

» Figure 5 Normalized moment M distribution vs y for
(h/L=0.01) 90/0/90 cross-ply in eylindrical bending using a

i 3 element mesh.
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B MQH3T

Figure 6 Normalized transverse shear force Q distribution vs
v for a thin (h/L=0.01) 90/0/90 cross-ply in cylindrical
bending using a 3 element mesh.
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Figure 7a Through thickness stress distribution for thin
(x/L=0.01) 90/0/90 cross-ply laminates in cylindrical
bending using s 3 element mesh.
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50

Oy at 2x2 Gauss stations near y=0

Figure 7b Through thickness stress distribution for thin
(h/L=0.01) 90/0/90 cross-ply laminates in cylindrical
bending using a 3 element mesh.
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coupling exists which eliminates the usual (i.e. single layer) x-y plane
symmetries. Results will be compared with a series solution (20 terms
used here) given by Whitney [25] since that solution is based on lamina-
tion theory.

All results are obtained for a=b=10, h=0.02, so that h/L=.002.
Layer material properties are E;1=40x10* psi., Ep=10° psi.,
v12=v23=.25, Gi2-623-.5x10‘ psi.

For all cases, a uniformly distributed transverse load is applied.
Plates are considered for which all sides are simply supported and for
which all sides are ideally clamped. Quantities of interest to assess

element performance are transverse displacement, W. and moments, M,
and Hy at the center of the plate. As well as inplane displacements u
and v along the edge of the plate.

Results are presented first for simply supported plates. Limited
convergence results for the case 6= 15° are given in Table 4. Table &4
shows all quantities of interest to be within 2.5 per cent of the exact
value for a 6x6 mesh of the entire plate.

Using the 6x6 mesh of the whole square plate, the effect of 6 on
the prediction of w, is shown in Table 5. Typically, 6 has little ef-
fect on the accuracy of the predictions.

The second example probleam is a plate clamped on all sides. Con-
vergence results for § = 15°, 25°, and 45° are given in Table 6. The

results are poor for small 8, i.e. 6= 15° and good for O= 45°, Table 6

shows the transverse displacement for the case 6= 45° to be within 7 per

cent of the exact value for a 6x6 mesh.
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(a) geometry

: .y T u-v-v-Bx;Q
. cl: y=vew=6,=0
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$5: veu=f_ =0
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. -L < — @ -
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LIF— s =-+
N egqual divisions
- (b) mesh and boundary conditions (top view)
- Figure 8 Problem definition and mesh for a 2 layer
rectangular plate of angle-ply (¢6) contstruction under
: uniform transverse loading.
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K Convergence of 2 simply supported square angle ply plate under uniform
: transverse load =45

X Mesh (whole plate)
y 2x2 4x4 6x6
X
E ug at (a/2,0) pred. 0.009 0.0079 0.0078
* exact=,.00771 pred./ex. 1.171 1.0295 1.013
! wo at (a/2,b/2) pred. - 8.113 8.9883 8.9486
] exact=8.927 pred./ex.  .9088 1.007 1.0024
M, at (a/2,b/2) pred. 8.6127 11.8877 11.6890
exact=10.42 pred./ex. 0.754 1.041 1.0236
vo at (0,b/2) , pred. 0.03356 0.03279 0.03279
exact=0.03281 pred./ex. 1.0228 0.996 0.9994
at (a/2,b/2) pred. 1.1193 1.241 1.2332
o exact=1.234 pred./ex. .907 1.006 0.9994
: TABLE 5
X Results for a thin simply supported square plate of angle ply
5 construction under transverse load for a 6x6 mesh.
g Fiber Orientation ve Vexact predicted/exact
" 15° 595.5 592.0 1.006
g +15° 894.9 892.7 1.002
) 125° 983.3 983.8 1.000
$35° 944.3 945.1 0.999
£45° 914.4 915.2 0.999

Using the 6x6 mesh of the whole square plate, the effect of 6 on

the prediction of the transverse displacesment is shown in Table 7. The
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TABLE 6

Convergence of the transverse displacement at the center of a clamped
square angle-ply plate under uniform transverse load

Mesh
Fiber 2x2 4x4 6x6
Orientation w. pred./ex. we pred./ex. w. pred./ex.
$15° 2.5378 1.2006 2.4057 1.138 2.5109 1.1879
£25° 3.3457 1.1365 3.0768 1.045 3.2143 1.0920
£45° 3.6611 1.0130 3.5004 0.970 3.8569 1.0680

problems occur when the length of an element is much greater in one di-
rection than the other. As has been stated c;rlior the element we are
now considering is analogous to a single layer element QH3 of Reference
[17)J. In the single layer element study [17], these effects were most
apparent for aspect ratios of a/b= 2 and 3 in the case of clamped bound-
aries, whaere as much a 5 per cent was found. Considering the present
problem of laminated plates when theta is small and the fibers nearly
line up with the x~axis, the element is much stronger in the x-direction
than in the y—direction. This may be causing a "material aspect ratio"
effect analogous to the "geometric aspect ratio" effect observed in iso-

tropic single layer plate elements—— further study to the phenosmenon is

. needed.

2.4.4 Concluding Remarks

This chapter has dealt with a hybrid formulation of an isoparame-~
tric element for the analysis of thin multilayer laminated composite
plates. The principal objective was the development and evaluation of

an element in which the displacement behavior is characterized by lami-

............
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nate reference plane inplane and transverse displacements and laminate
non-normal cross section rotations and in which the components of stress
are related to a set of laminate stress paramgters; i.e. so that there
is no increase in the number of degrees of freedom or the number of
stress parameters as the number of layers increases. For thin nultilay—
er laminates, a reduced formulation was defined which allows for a sig-
nificantly more efficient stiffness-generating algorithm. The results
of this sudy have been applied to the development of element MQH3T.

In summary, element MQH3T gave good convergence performance. The
element retains a high degree of accuracy €for thin plates having a
thickness ratio less than h/L=0.01. The spanwise distribution of M
pointed out that the best points to calculate oy are at the sides and
center of each element. The spanwise distribution of Q indicated that
the best points to calcuated Typ are at the 2x2 Gauss stations. The
poor results displayed for small 60 in the case of an angle-ply plate
which has been clamped on all edges are thought to be due to a type of
"material" aspect ratio problem. For the case of an angle-ply plate

which is simply supported on all edges the results are very good and ¢

has little effect on the accuracy of the predictions.
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Chapter III

FORMULATION OF THE CONTACT PROBLENM

3.1  INTRODUCTION

The finite element method is now widely recognized as a powerful
tool in solving problems in structural and continuum mechanics. The fi-
nite element method owes its popularity largely to its generality. It
permits easy modeling of arbitrary shapes, with arbitrary loads, bounda-
ry conditions and can include the effects of material and/or geometrical

nonlinearities. The unique characteristics of the contact problem make

an analysis difficult even by the finite element method. As the load .

varies, the region of contact between bodies changes and sliding rela-
tive to each other occurs. This sliding may be accompanied by friction-
al forces which act to oppose the sliding motion.

The work done thus far in the area of finite element analysis of
contact problems can be differentiated in the following areas. First,
the formulation is based on either the displacement model or on various
hybrid and mixed models. Second, the models are capable of considering
contact problems in which there may be node to element side contact or
they are capable of handling only problems in which there is node to
node contact. The last distinguishing characteristic is that the effect
of friction along the contact surface may or may not be included. The
largest portion of the work done has utilized the displacement model

formulation and can only account for moderate sliding between contacting

bodies (i.e. node to node contact).

R e g
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This method was first applied by Yamada, et.al. [26] to the Hertz
contact problem of two identical cylinders pressed together. The meshes
were divided so that nodes of one cylinder were in contact with the
nodes of the opposing cylinder.

White and Enderby [27] applied the finite element analysis to the
problem of a connecting rod eye loaded by means of a pin. They used
linear triangular elements to model the two deformable bodies and spe-
cial overlapping connecting elements, which were assigned stiffness to
model the surface of contact. Iterations were required to obtain the
correct displacements.

Gaertner [28] investigated plane elastic contact of solids subject
to small strains with friction.  Linear triingular displacement finite
elements were used. Node to node contact was considered and an itera-
tive method was utilized to find the equilibrium state.

Fredriksson [29] introduced a 2-dimensional contact constitutive
relation; a general slip criterion with associated slip rule was includ-
ed. The contact surface was limited to extending in the node to node
configuration. In order to reduce the size of the problem, degrees of
freedom not related to the nonlinearities were eliminated using the su-
per element technique. A Coulomb type qf slip criterion with an associ-
ated slip hardening rule was assumed.

Gap elements were utilized by Stadter and Weiss [30] to model the
gap process. The solution was achieved through a iterative procedure
which adjusts the modulus of the gap elements. The procedure was ap-
plied to the thermostructural analysis of the heat shield of a radioiso-

tope thermoelectric generator design.
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The method presented by Okamoto and Nakazawa [31] dealt with the
irreversibility resulting from stick—-slip phenomenon. The loading was
incremental where the magnitude of each increment of load was calculated
to cause a change in one node pair along the contact surface. The con-
tact conditions were additional conditions independent of stiffness
equations.

Sachdeva and Ramakrishnan [32] generalized a procedure developed by
Francaville and Zienkiewicz [33] to include frictional effects under
proportional loading. The method uses the flexibility matrix which was
obtained by inversion of the condensed stiffness matrix in which all
nodes were eliminated r -ept those where contact was likely to take
place.

A direct automated procedure for frictionless contact problems is
presented by Mahmoud et.al. [34]. This method circumvents the need for
the inclusions of interface elements and does not calculate contact
pressure. Simplicity seems to be the primary goal of its authors. The
method applies only to contact problems in which there is no tangential
motion relative to the contact surface and to contact problems which are
purely advancing or receding. The direct incremental method used here
means the applied load was scaled so that it would just close the re;
spective gap yet not induce the interpenetration to the contact surfac-
es.

Displacement models have also been devolgped to account for exten-
sive sliding contact, i.e. nodes of one body may come in éontact with
the side of the element on the boundary of the opposing body. Therefore

these models also account for friction along the contact surface.
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Chan and Tuba [35] solved the problem of contact using linear tri-
angular elements derived by an assumed displacement model. The model
allowed for node to node and node to element boundary contact and cou-
lomb friction betweed the two bodies. The effects of clearance, fric-
tion, and load on stresses in turbine blade fastenings were studied and
compared with photoelastic experimental results. |

Large displacement contact-impact problems has been studied by
Hughes et.al. [36]. The theory includes frictional effects and allows
for geometrically complicated contact surfaces. Contact is not limited
to node to node configurations.

Hybrid and mixed models have also been used to solve contact prob-
lems in as attempt to obtain more accurate results. Kubomura [37] de-
veloped a method for analyzing contact problems which may'be either
frictional or frictionless and may involve extensive sliding between de-
formable bodies. It consists of a hybrid formulation including the con-
ditions of contact, and a scheme to determine the place of contact.

The work of Hung and Saxce [38] assumes that no friction between
solid bodies exists so that the contact condition may be expressed in
terms of displacements alone. The superelement technique was used to
reduce the number of degrees of freedom. Hybrid triangles with 12 de-
grees of freedom were used to model the deformable bodies.

The mixed finite element method was applied to two dimensional
elastic contact problems by Tseng and Olson [39]. Some of the displace-
ment variables were treated as natural boundary conditions in the con-

tact region. The procedure includes sliding and adhering of contact

node pairs.
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The representation of the surface of contact has been a subject of
special concern. A special bond element was utilized by Schafer [40] to
represent mathematically the disipative processes which occur during
contact. A relationship between the shear stress and the frictional de-
formation is assumed to be known, and an element stiffness matrix is de-
rived with the aid of the principle of virtual work.

Oden and Piries [41] propose nonclassical friction laws in an at-
tempt to overcome physical and mathemetical difficulties which arise
through use for the classical Coulomb law of £riction. Variational
principles.for boundary-value problems in elasticity in which such non-
linear nonlocal laws hold were then developed.

The problems of elastic beams or plates supported on a foundation
have been examined. An iterative technique was presented by Svec [42]
for determination of contact area between a plate and its supporting
elastic Eoundation;

Mohr [{43] modelied an elastic supporting beam or plate. The method

is not iterative. A contact stiffness matrix is calculated to simulate

adhesion to rigid surfaces.

Westbrook [44] solved contact problems for the elastic beam. Vari-
ational inequalities and finite.elenents were used to obtain approximate
solutions to bending problems for elastic beams in the presence of a
rigid barrier.

Solutions of the problem of wheel contact have been reported.
Tielking and Schapery [45] presented a method of shell contact using

discrete Fourier transform for analysis for linear and certain types of

nonlinear problems. The method is used to calculated the road contact
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pressure predicted by a finite element toroidal shell model of a pneu-
matic tire.

A numerical method was developed by Paul and Hashemi [46] for the
determination of contact pressure which arises when two elastic bodies
with closely conforming non-Hertzian frictionless surfaces are pressed
together. The method included a technique for automatically altering
meshes that overlay the changing contact patches. Problems of wheel and
rail contaci were examined.

Mathematical techniques have also been applied to contact problems.
Singh and Paul [47] showed how to solve antiformal non-Hertzian problems
using the so—called simply discretized methed. The problems solved in-
volved frictionless surfaces.

Conry and  Seireg [48] used optimization techniques to develop a
mathematical programming method which utilized a simplex-type algorithm,
The technique is applied to contact of beams of elastic foundations.

The present work is an extension of the work done by Kubomura [37].
The hybrid stress model is used to solve edge contact problems involving
thin multilayer laminated composite plates, modeled using the newly de-
veloped multilayer elements. The model can analyze problems in which
there may or may not be friction along the contact surface. There may
be extensive sliding between the two contacting bodies. "Contact ele-
ments" having unknown nodal contact tractions are used to model the con-
tact surface. -

In general, the contact of an elastic body with the edge of a lami-
nated plate could produce complicated three-dimensional effects. There

might include, for example, introduction of bending forces and bending

------
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displacements even in symmetric laminates, severe warping in the zone of
contact, and a contact surface which varies through the thickness of the
laminate. In principle, such a 3-D contact analysis could be developed.
However, such an analysis was felt to be impractical at this stage of
investigation because of the excessive computer core and CPU require-
ments needed to model these effects (i.s. a more general multilayer
plate element, an; an arbitrary 3-D contact surface inspection and cor-
rection scheme). Therefore, attention is restricted here to thin symme-
tric laminates subject to edge contact which does not vary in the thick-
ness direction and for which the contactor moves only in the plane of
the laminate. In effect, only inplane laminate displacements will occur
even though the bending/stretching multilayer element MQH3T will be

used.

3.2 HYBRID STRESS FUNCTIONAL FOR CONTACT

3.2.1 Variational Principle for the Contact Problem

Let us consider two elastic bodies --~ body A and body B. Body A
and body B are in contact along the contact surface S.. The boundary
of body A and the boundary of body B along the contact surface, S. oc-
cupy the same space, but the two bodies do not overlap. |

As can be seen in Figure 9, each body is under its own system of
§roscribod_tractions and prescribed displacements. Tractions along the
contact surface are resolved into normal and shear components.

Using equilibrium we can telate these tractions.

B
'T;”-# Ts =0

(3.1)
T+ h? =0
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Figure 9 Definition of the problem of contact between two
deformable bodies.
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. Sliding between the two elastic bodies relative to one another is al-
lowed. When sliding occurs the following contact conditions must be

satisfied for each of the contacting bodies along the contact zone.

v
Ay

(4

.8
PR

Where T, is the normal traction on the surface of contact, T is the
tangential traction of the surface of contact, and u is the coefficient
of friction. Note that ( )2 and ( )P (or A and B) denote quantities
pertaining to body A and body B respectively.

The location of the contact surface is assumed between the two
elastic bodies as illustrated in Figure 10. At times during contact,
the bodies may undergo extensive sliding relative to one another. Other
studies assumed that nodes of one body remain in contact with nodes of
the other. This may not be adequate because when tyo bodies come into
contact it is likely that the surface of one body will move relative to
the other body. In the formulation used here, one contacting body is
. allowed to slide reiativc to the opposing contacting body. This motion

of the contacting bodies causes unknown nodal forces to be applied to
the contacting nodo;. The nodal forces of one contacting body are in
;E equilibrium with the nodal forces applied to the opposing body; the pro-

cedure used here results in coupled matrix equations with nodal forces

.
’
n

within the zone of contact as additional unknown quantities.
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Figure 10 Definition of contact surface, S..

NN

-
‘.
-
-

LN




From the theory of elasticity certain conditions must be satisfied

" if two elastic bodies are in contact. First, in the region of contact

L4 the tractions are equal in magnitude and opposite in direction. Second,
ﬁ the normal tractions are compressive and the shear tractions oppose the
E direction of motion. Coulomb's law of friction is satisfied. Third,
there are no gaps and no penetration in the region of contact.
The conditions above are imposed upon stresses and displacements in
- the region of contact as follows:
] Displacements
. Xih s Uih = X;B+U;°
2 Stresses
e T8 — o (3.3)
: T:% 4+ Ts? =0
3 Ts* € 2 0 Tn?
0 LlE 2u T’
il where X; are the coordinates before deformation, U; are the dis-
; placements, T, are the normal tractions on the surface of contact,
3 T, are the tangontial' tractions on the surface of contact, and u is
_;; the coefficient of friction. The convention of the last of equations
'- R gty T Ay G o G ey NPT AL VAT AR
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(3.3) is such that tangential tractions counteract relative movement.
The equality holds when there is sliding; otherwise the inequality
holds.
The hybrid stress functional [38] is based on a modified complemen-
‘tary energy principle in which interelement traction continuity and me-
chsnical boundary conditions have been released via the Lagrange Multi-
plier technique, and is given by
Tme = ?/[5/}&/ Jf;/a/u J7
»
”
-— 3.4)
[ uTids * [ T Uids
& f
o

where, sijkl is the elastic compliance tensor, T; are tractions,

—

T:

i are prescribed tractions, o;

ij are stresses, Vn is the volume of
the nth element. Sy, is the interelement boundary of the nth element,
and S,,.ﬂ is the portion of the boundary of the nth element on which

where v: are the outward unit

stresses are prescribed. Ti'°ij”j i

normal components, and %iiei =0 from equilibrium, Note the second
term of equation (2.1) is equivalent to the second term of equation
(3.4). This is seen by applying the divergence theorem to the second
term of equation (2.1) and requiring that stresses satisfy the homogene-
ous equilibrium equations (as roéuircd by the hybrid stress model).

The conditions of contact, equations (3.3), are introduced into the
hybrid stress functional I ., equation (3.4), using the Lagrange mul-
tiplier technique, where ?; and ?: are the Lagrange multipliers.

The hybrid stress functional I €, which includes the conditions of

contact imposed upon the two contacting bodies within the zone of con-

tact is stated in the form [38]:
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(3.5)
+

7‘70,-45—/ fﬁ[/u,,",u 554) = (U4 1) ]
:gZATG szh

+ 7 [P+ XR) - (U Xs‘)}]els

To find the stationary value of the functional,

we take the varia-
tion with respect to displacements,

Ui, stress, o

ije and the La-
o~ e
grange multipliers, T, and The

The resulting Euler equations which
deal with the surface of contact are given by:

Displacements

(Un‘#-)(n») - (Un‘-l-Xn')-‘O
(Us'4+- Xs&) - (U; $+XSB)=O

Stresses

(E, +Tnh)=o0 (3.6)
(?n - T}B)=6

(Te + Tah)=0 °

(s - T&)=0

Coulomb's law of friction is also

one of the conditions of contact
which must be satisfied.

A constraint is therefore added to satisfy the
condition desling with the friction which occurs when the opposing bod-

ies slide relative to one another; i.e:
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7; 51'/'('7'” . (3.7)

Substituting equation (3.7) into the Euler equations which deal with the

surface of contact, equation (3.6), yields
(Un*+Xa®) = (%4 X, %)= 0
(U5'4+)/5'4)- (Use + )(58)80

(Th? + Tmé/i=20
(3.8)

(Te# ~Ts4)=0

~ A

7-54-& // T. %

7‘53_4__."/“7—”3

These conditions on the field variables in the zone of contact are
exactly the same as the conditions of contact. Thus, the functional
M,.©, equation (3.5), will satisfy the conditions of contact (within

the zone of contact) necessary to solve the problem of two bodies in

contact.
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3.2.2 Incremental Assumed Hybrid Stress Formulation

Geometric nonlinearities in the relationship between load and dis-
placement complicate the general contact problem; i.e. as loading condi-
tions change, the surface of contact also changes in a nonlinear fa-
shion. The best method to approach such a problem is with an
incremental formulation. As the loading condition changes incrementally
from state to state, the place of contact changes.

It is difficult to treat-the contact surface as an unknown in the
formulation because we are unable to compute the necessary integrals
over the surface of contact. The method used to solve the contact prob-
lem involves assuming a contact surface and computing the field vari-
ables which render the functional stationary. It is then determined
whether the field variables satisfy the coAditions of contact within the

contact zone. If the conditions of contact are not satisfied, another

contact surface is assumed. This process (iteration) is repeated until

all conditions are satisfied.

The nonlinear ana.ysis becomes a step-by—step solution which has
been decomposed into a series ;f linear incremental problems with ini-
tial conditions. For instance, a displacement u may be expressed in

terms of an initial value, uo, and and incremental value, Au.

w=U’ +4d 3.9

At the beginning of each step, the initial value of the field vari-
ables are, in general, not exact. Hence they may not satisfy stress

equilibrium conditions or the compatibility requirements. Correction
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terms for equilibrium and compatibility can be included in a finite ele-
ment formulation based on an incremental variational principle. The in-
cremental hybrid-stress functional for contact as developed by Kubomura

[38] may be stated as:

The = z 1 Ay Siyes 4k dV - AT AU ds
v.,""

ope

- A?,-AD';ds-f T 470 ds +/f-AD‘,-ds

A+8
54’7 &D‘*S(‘ﬂ . Q:*e

(3.10)

—f (7",'-1-13'77)//5;”*43;‘1- %) - (U8 80:F + X, 8)]015}
%

where:

A”ij is the incremental stress tensor.

AT;

i are the incremental tractions.

Aﬁ; are the incremental displacements on the boundary.

&?i are the incremental applied tractions.
4 A/
(Ti+ATi) are the nodal contact forces within the zone of contact.
~
U; are the displacements on the boundary, 3V,.

th

V, is the volume of the nth g¢lement.

3V, is the boundary of the n'l element.
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S‘-,n is the portion of the boundary surface on which tractions are
prescribed. |
Sun is the portion of the boundary surface on which displacements
are prescribed.
Scn is the portion of the boundary surface the two bodies have in
common, known as the contact zone.

When using the functional II;.© the following conditions must be

exactly satisfied:

Zﬁéfcj.a =0

Sy § =0

@3.11)

AT = Aa’,-] ‘/3‘
B e

A= AU e Su,

where AU is the incremental form of the prescribed displacements.
The conditions of contact within the zone of contact, previously
stated in equation (3.3), are stated now in an incremental form:
g (Tn® +48Ty4 ) + (Tn®+4TW®) =0
(4 +071%) + (Tx® +0Ts8)=0
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ﬁ;Ardnﬁ;é :/L CT)’A -fATn 4) (3.12)
(T4 8T9)% 24 (TP +4T,1)

(Una-k Aupd & Xnﬂ)—(Uns-PAUwB‘*‘XnB): @
(Vs +8U* 1 X#) = (UBrpub+ ¥,8) = o

where
T,, AT, are the initial and incremental tractions, respectively,
normal to the contact surface.

Tg, AT, are the initial and incremental tractions tangential to the
contact surface respectively.

U,, AUp are the initial and incremental displacements normal to the
contact surface, respectively.

U,, AU, are the initial and incremental! displacements tangential to
'the contact surface, respectively.

X,s X5 are the normal and shear components respectively of the coor-
dinates before deformation.

One important feature of incremental solutions is that at the be-
ginning of a loading increment the solution is, in general, not exact,
hence it may not satisfy astress equilibrium conditions and it may also
violate the compatibility conditions. The formulation of the functional
. takos.into consideration the effect of initial equilibrium im-

balance and leads to a system of mitrix equations for the incremental

solution with equilibrium correction Violation of displacement compati-

R i TR IR
PPN PR G PN, PSPPI,
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bility leads to an incremental solution which also contains corrections

for the compatibility mismatch.

3.3  MATRIX EQUATIONS

The hybrid stress functional IL,.®, equation (3.10), for contact

problems is stated below in matrix form:

Slry
_ f -7—7" ;vds _ (3.13)
Qw"' S(n

"} (Fr0T)7( 20" = 40°%)ds

Sen

_.5 (T4 07T /(0"94—)(4) - (0‘8+X8)]JS
S

.........................................................................
...................................

...................
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where ( )T is the transpose of ( ). The vectors and matrices are des-
ignated by underscoring with a tilde. The functional Il,.€, equation
(3.13), includes equivalent nodal forces for the corrections of (a) ini-
tial material overlapping, (b) separation and (¢) initial force imba-
lance at the surface of contact.

In the hybrid stress model Ac is interpolated in terms of a set of
stress parameters such that the homogeneous equilibrium equations are

satisfied.

A’_fr,_ E Aé (3.14)

The boundary tractions are related to the same stress parameters (using

Cauchy's formula):

-

A = R 4@ (3.15)

The displacements are interpolated in terms of nodal displacements

q and Aq:

AU=/§/A4

Ll

(3.16)

J=ng

Coordinates are interpolated in terms of their nodal values,

’2(,= NQ‘: (3.17)

~J
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The contact surface is also discretized into finite elements called
contact elements having contact nodes. The contact tractions are inter-—

polated in the contact element in terms of their nodal values, t in the

form:

(?+A:F')=ﬁ£ (3.18)

We substitute equations (3.14-~3.18) into equation (3.13) to obtain:

e = Z{f LogTPTS R 44 W

O
+/ %’N"IoLs
Sen
+f 4e7 NT LT ds
3 (3.19)

Sen
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The following matrices are then defined

— (3.20)
NT T ds

Reo= | 174 Lghs 2 a2 22) ] ds

Za

Fo= [ MY J

where Q

o s q .
On and 250 are stress equ;lfhrxun checks on S,n and

Sons respectively, and Epn is an initial mismatch check on Sen
Upon substitution of equations (3.20) the hybrid stress functional

for contact problems becomes:
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7};{_;2 A/} H"Qé‘ AT/ 44;
r0a g g, 4-4;4"/650
AT 2 —jﬁ ar (3.21)
+3 .é Hn® 48° - AL Gx°
+4 ‘rd,@_n + 4287 A.% — 4 "',Q E,0
A S R
- 1%;' Fy }é 7+~ é%i fi; Jﬁ - lé?jézer

The element nodal displacements and contact element nodal tractions
are not independent from element to element. The element variables, O,
can be related to their counterpart assembled structure variables, de-

noted here by (O*, by Boolean matrices, LA, l.nB, and Lnt:

A—; (3.22)
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Note that the element stress parameters, AB, are independent from ele-
ment to element. It is therefore not necessary to define 3 set of
"structure" stress paramenters.

Equations (3.22) are substituted into equation (3.21) to yield:
c A
-z, /_/ 4B Tt 4P - 484G L 7
2 —
AT, A A ir A T,AT A°
» T
LD 4 LT Q' — 227/ 57 Rew

HETHA - 208" 4

(3.23)

The stationary condition of I ¢ gives:

SHETT (" 18% ~ Gu® L # "/
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B 4 . p (3.264)
T AT 2T
F St T LR L L
e 8 ) t L%
+ Ly Bt L 4z
~4tT Ry ) = O
en” " Ry
Therefore, €for arbitrary B/A\I;AT, 69§PT, 6A3:_AT, 6’AS::BT, and
F égr not equal to zero, the following equations must be satisfied:
- 4, A A A¥
-- Ha' 86" ~Gu’ Lu g = ©
é 4 4%%= 0
b4t - Gr Lo Ag
AT ATAQ.F
Z (= Ln® by TN+ L 4
” L d
A T A
2T Q! - L Rew — LT B MTLEET) = O
: r ar 8
= (= Ln® 6,27 48%7 + Ly 44 (3.25)

N

BT 40— L Rene — L™ Fr*TLa E0=0

=
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Since A8 are independent from element to element they can be elimi-

nated on the element level by solving the first of equations (3.25)

4% = 1?7 Gu* La? A’DZ'“-

(3.26)
- y-3 *
488 = 7 G L L2
Substitution of equation (3.26) into the third and fourth of equations
(3.25) yields
AT | A A AT <
SN AN AR ST U T A
AT AT AT A
= Ly 80y + L Q0 - Ly Rer
: (3.27)
k Y- L 7. ﬂ*’ 7" 67"L + >
ZLn A_;__ Fn® Ln*¢
_ AT T 8 8T .'B
=Ly A" + LTRSS - Ly Re
4 where
- 4 A-l A
en = Csn A ffn <iy
v (3.28)
AT 8-/
2= Gn"" HW
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Equation (3.28) defines the element stiffness matrices. The summa-
tion over n in equation (3.27) corresponds to the usual assembly opera-
tion. Applying this to equation (3.27) and the last of equations (3.25)

gives:

‘*o

K*AA%*4+FAT-*£*- A&l&- ‘I‘@A* _)PE

S R

(3.29)

-sz?‘éli?A“:f-;fifgéljpéyﬁ —_ 52255 =0

Equations (3.29) may be collected in matrix form in the following man-

fki-A 0 ' F:.#AT A‘iu'#
o RF =P (4 18
At - t*

(3.30)
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For the contacting bodies, §3A, ErB is assembled and con-
strained. The only portion of equation (3.31) which must be recomputed
for each iteration are the contact stiffnesses, ETA, 'E:B the global
stiffnesses of A and B remain constant. In practice using the first two
of equations (3.29) to solve for éQfA and égfn in terms of t*.
éﬂfA and éﬂfn are substituted into the 1last of equations (3.29).
Once‘zj was found, éafA and QQ:B were found using back substitution.

The assembled contact stiffnesses are very sparce; i.e. only the dis-
placement degrees of freedom which fall on the contact surface will con-
tribute to the contact stiffness. The sparcity is considered in order

to minimize the number of multiplications necessary to find a solution.

3.4 THE CONTACT ELEMENT FOR LAMINATE EDGE CONTACT

As described earlier, the first step to begin an increment or iter-
ation is to assume the location of the contact surface, S¢y between
the two contacting bodies (Figure lQ). The contact surface is divided
into contact elements with contact nodes (Figure 11). It was determined
that the elements should have three nodes so that they would be compati-
ble with the number of nodes along one side of the multilayer laminated
composite plate element (MQH3T) which has been described in the previous
chapter.

The normal and tangential tractions are interpolated along the con-
tact surface in terms of their values at the three contact nodes using
the quadratic distribution given by: where { va.ies from -1 to 1, as

seen in Figure 11, and ED and t, are the nodal values of the normal

and tangential components respectively of the contact tractions.




b o i sondc o A0 Al il
Laatalh 2 Sl el % LGk Al ekt el e YA Y A AL SN N R A ]

NI -~ AR

Contact surface

3

Element 1

Elementv(N—l)/Z

RARSE AN
e

W

node i

Contacﬁ ;loment

= Figure 11 Typical contact surface and description of 2
= single contact element.

»
2

]
.A.',l
.




S IV RSV VRS L3 2

4
=2

(3.31)
- o - . =/
T 4T = (F 5T () L (5

The relationship described in equation (3.31) is stated in matrix form
by equation (3.18), and defines the matrix X, The contact element
stiffness, Eﬂ' can then be computed by integrating over the contact
surface using the last of equations (3.20).

In the present formulation, it is not necessary for the nodes of
one elastic body to be in contact with the nodes of the opposing body
along the contact surface. Nor is it necessary for the nodes of either

elastic body to be in contact with the contact nodes. A contact surface

is assumed to *e fixed in the coordinate system but not necessarily to

the contacting bodies. The contact surface and the contact nodes are
;5 assumed to be known in order to perform the integrals along the contact
surface, S..

In application, the interval of the integral is broken into a sum
of integrals each of which is over an area in which one contact element
is in contact with one body element. In Figure 12, the interval of the
first integral begins at node 1 of contact element A and corresponds to
the degrees of freedom at the 3 nodes of body eleﬁent a and also to the
- contact tractions at the 3 nodes of contact element A. The interval of
the first integral ends at node 3 of the body element a. The second in-

tegral begins at' the first node of the body element b and ends at the

third node of contact element A. The third integral begins at the first
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node of contact element B and continues to the third node of body ele-
ment b.

This process continues until the end of the contact surface is
reached. As the integrals are evaluated they are assembled to form the

contact stiffness Ejf

-
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3.5 SOLUTION TECHNIQUE

3.5.1 Introduction

Throughout the formulation, the contact surface has been assumed to
be known. As the load varies, a major portion of the solution is to
vary the contact surface

The overall strategy for solving the contact problem is illustrated
in Figure 13, and is briefly summarized as follows (for the Nth incre-
ment and the kth node):

1. The Nth increment of external 1load or prescribed displacement is
applied.

2. A contact surface is assumed along with the contact nodes on the
contact surface. Each contact node is assumed to be sliding or
not sliding.

3. The necessary matrices are calculated and assembled. Then .for
the ith iferation of the Nth 10ad step, incremental displace-
ments iAUk, and contact tractions i(f:+A?;) are solved
for from the finite element matrix equation (3.31),

4. Rnowing the total displacement N'IUk at the end of the previ-
ous loading step (N-1), the total displacements N°1Uk +
AiUk on the boundary are checked to determine if the dis-
placements satisfy the condition that there are no gaps and no
penetration in the ;o;ion of contact. The contact tractions
i(?;+d};) are checked to determine if the normal tractions
are compressive and if Coulomb's law of friction, equation (3.2),

is satisfied. If any of these conditions are not satisfied, the
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Set load
increment
Assume contact surface

and
sliding or no sliding.

a

Generate and solve Modify

F.E.M equations ‘ contact surface

l 1 A

Check conditions/

not satisfied

of contact.

;satisf{oqj

y

notAsatisfi.d!

Chcck convcr;,hcc

llatisfiqd!

Next load|
increment |

, i
Figure 13 Summary of the solution technique for solving the
problem of contact between two elastic bodies using the
hybrid stress formulation.
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location of the assumed contact surface is modified and steps 3
) and 4 are roéoatod until the conditions of contact are satisfied.
. 5. Once the conditions described above have been satisfied a conver-
gence check is made. If the solution is not converged steps 3 -

5 are repeated until the solution does converge.
Specifically the conditions of contact are listed below with a

brief description of the manner in which the contact surface is modified

e 0 g 4 D

if the condition of contact is not satisfied.
1. The first condition of contact states that the nodes of one body
beyond the last contacting node may not penetrate the other body.

If the elastic bodies in contact have overlapped, the contact

PR RERC R g NN

surface is extended to include the contact nodes that penetrated
the opposing body. Subsoctién'S.S.Z will describe the method
used to extend the contact surface.

2. The second cdndition of contact states that normal tractions
along the surface of contact must be compressive. If the normal
traction at any two contact nodes within a single contact slement

; are found to be tensile, the contact element is excluded from the

contact surface. Subsection 3.5.3 will explain the method used
to release contact nodes.
3. The third condition of contact is the relationship between nornal-

- and tangential contact tractions:

; fTs+ 8750 4 g [T #0%n | : (3.32)
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- If the equation (3.32) is not satisfied then the constraint in

¢ equation (3.33) is applied and the contact node is assumed to be

‘e 1
P A RV ]

sliding, Subsection 3.5.4 will describe the method to satisfy

1

the relationship between normal and tangential contact tractions.

-.:;-: ‘ /inff;'/ =M /?,.1—4%, / (3.33)

v Subsection 3.5.5 will describe the method employed to check for

LR convergencs.

3.5.2 Extension of the contact surface
" As previously described the first condition of contact states that
gi nodes of neither body beyond the last contacting node may penetrate the
] opposing body. Each node outside the zone of contact along the surface
j;; of two elastic bodies which may come in contact with the opposing body
- is checked to determine if it has penetrated the surface of the opposing
body.

The method to determine if nodes of one body have penetrated the
= other is described as follows:
) - 1. The first step is to check if any nodes in body A penstrate body

B. The x-coordinate of each node on body A is compared to the

x-coordinates of the nodes on the surface of body B to determine

between which two nodes on body B the node on body A falls. The
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y-coordinate of the surface of body B is ;omputod at the x-coor-
dinate at which the node of body A is located. Thus it-can be
determined if the node has penetrated the surface.

The second step is to check if any nodes on body B peretrate body
A in 3 manner similiar to that which has just been explained.
Once it has. been determined which nodes have penetrated the op-
posing body for both elastic bodies, the contact surface is ex-
tended to include these nodes.
The third step is to extend the contact surface. Figure 14 il-
lustrates before and after the solution for an iteration has been
computed. Node 4 and node 5 of each body have penetrated the op-
posing body. The contact surface is extended to include nodes &
and 5 of body B. The coordinates of the new node 4 of body B are
chosen by constructing a straight line between the locations of
node 4 of body B for the solution of the previous iteration and
the solution of the present iteration. The new location of node
4 of body B is located along this line midway between the bounda-
ry of body A and the boundary of body B. The new location of
node 5 on body B is found in a similiar manner. |

The nodes of body A which have penetrated body B are then
placed on the contact surface in the following manner. A
straight line is drawn betwsen the location of node 4 for the
previous solution and the present solution. Another straight
line is drawn between the new nodes 4 and 5 of body B. The new

node 4 of body A is found at the intersection of these two

straight lines just mentioned. The nodes of body A which have
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converged solution of load increment (I-1)

7

Solutién of the ith iteration for 1913 increment I

Figure 14 Description of how the contact surface is extended
to include nodes outside the contact gsurface which have
penetrated the opposing body.
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penetrated body B beyond the last new node on body B are not add-
ed, so that the end node on the contact surface might always be a
node on body B.

As a result of nodes 4 and 5 of bodies A and B penetrating
the oposing body, the contact surface is extended to include

nodes 4 and 5 of body B and node 4 of body A.

3.5.3 Release of Contact Nodes

Once the solution has been calculated for a given iteration, all
the contact nodes are checked to determine whether or.not the normal
traction is compressive. The contact elements used each have three
nodes as described previously in Section 3.4, The method used to detqé-
mine whether or not to exclude a contact element from the contact sur-
face was to drop any element in which the majority of its nodes have
tensile normal tractions., In other words, at least two out of three
nodes must have tensile normal contact tractions to exclude the contact

element from the contact surface.

3.5.4 Satisfaction of the Relationship between Normal and Tangential
Contact Tractions

As the load is applied incrementally to one or both of the elastic
bodies in contact, the location of the zone of contact will change. It
is possible for the lécations of the contact nodes to also change as
well as the type of contact, i.e. whether or not the contacting bodies
are allowed to slide relative to one another at any particular node.

To simplify programming efforts for this probles we have chosen to

locate the contact nodes along the contact surface in the same location

as the nodes along the surface of body B.
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If no sliding occurred during the ith iteration, the location of

the nodes on body A are located by maintaining the ratio of AL/L found‘

from the converged solution for the last load increment iljustrated in

Figure 15 and stated as follows:

N~/ N=/ in ¥ _ o N
=4 -5 |- ,-*’\-—4 5, (3.34)
L bzll.a _.an-l 82” — IB,AI

Therefore iAIN may be located. The following test is made at each

contact node.

/7% +475 /4/«4/%7 f—A7:;r/

(3.35)

If the condition is not satisfied at a contact node the following con-

straint is introduced:
] T +A7Aé/='/,¢_/7§,+A7?;/ ' (3.36)

The state of the contact node is then changed to sliding.

If sliding has occurred during the ith iteration, the location of
the nodes of body A are found by projecting them perpendicularly onto
the contact surface. The following test is made at each node on body A

to determine whether of not the node will continue to slide.

|4 - 4] <2

LI (3. 37)




SNEOCE e Ao S S SR M SR TS SRR SRR AL R ACAC AR A IE A SR AE A A AR R
99
Contact surface /
Ag Bj
/"’.
B, .
- A Converged solution
B 1 for the (N-1)th load
increment
AL

Solution after the
o ith iteration
of the Nth load increment

Figure 15 Description of ratios used to determine whether or
not a node is classified as sliding or not sliding.
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where ¢ is some prescribed small number and AL', L' are illustrated in
Figure 15. If this comparison is satisfied, the node will continue to
slide. If this comparison is not satisfied, the sliding condition,
equation (3.36), is dropped and the nodes of body A are relocated in the

" manner previously described for the state of no sliding.
Thus after each iteration the locations of nodes for both of the
contacting bodies are found along the zone of contact as well as the

state, i.e. sliding or no sliding at each node.

3.5.5 Convergence

Once the conditions of contact are satisfied a test of convergence

may be made,

/r/

;?: AUZ" IdU&

i+ .38)
ALl 3

where AUy is the displacement at the kth degree of freedom. If R is

less than a prescribed quantity the solution is considered converged.




AR YA A A A i L S L L L SN S el A A AR SR S

101

3.6 EXAMPLE PROBLEMS AND NUMERICAL RESULTS

In this section, the finite element model and solution scheme de-
veloped in this chapter is applied to problems of contact between a disk
and the edge of a rectangular plate (used to simulate a semi-infinite
half-space). This model problem was selected for several practical rea-

-
. sons:

i . 1. For elastic bodies, an analytic solution exists for the problem

space.

i: of f;ictionless contact between a disk and a semi-infinite half-
[
).

2. It was determined that a relatively coarse mesh would be required
in order to not exceed available core storage. Comparison with
an available analytic solution was necessary for identification
of an adequate mesh.

The thin multilayer plate element, MQH3T., developed in the previous
chapter, has been used to model each of the cont;cting bodies. Atten-
tion is restricted to symmetric laminates (i.e. no bending/stretching
coupling) subject to contact by a cylindrical isotropic body. It is as-
sumed that contact varies only in thc. x-y plane (i.e independent of the

- plate thickness direction). Thus transverse displacement and cross—sec-
tion rotations are 2zero. In order to conserve computer core storage,
all transverse displacements and cross—-section rotations have been con-
strained to be zero.

After substantial trial and error, the mesh shown in Figure 16 was
selected. The semi-infinite half space is simulated by a finite plate

with the same overall dimensions of the disk due to the limitation on

the number of elements. There were not enough elments available to make
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a transition from the very small elements near the contact 2zone to the

very large elements far away from the contact zone. Note that core

+, VRN

storage of 4096k was needed for this mesh even after constraining the

s, °
PR}

transverse displacements and cross-section rotations. (The major stor-

age requirements correspond to the assembled stiffness and the product
H°1G stored for each element.)

At this point due to the coarse mesh which was used, there is a
necessary lack of automation to find a reasorable solution. For each
increment of load it was necessary to make saiple runs and compare thea
to one another in order to find the increment of applied displacement
- that would bring the desired number of contact elements into contact.
Th;s was accomplished by keeping the magnitude of the contact traction
at the last node to come into contact as close to zero as possible. It
the magnitude of the last contact traction was negative, the magnitude

of the increment of applied displacement was manually increased. If the

magnitude of the last contact traction was greater than the contact

Nlh

traction at its neighboring node the magnitude of the increment of ap-
plied displacement was manually decreased. For a finer mesh this would
- not be necessary; i.e. load or displacement increments could be imposed
>lutonltically.
The following problems were solved:

1. §odorato sliding frictionless contact of a deformable disk with a

deformable semi-infinite half-space.
2. Moderate sliding frictionless contact of a nearly rigid disk with

- a deformable semi-infinite half-space.

......
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Body B

6" o2

pody A

Figure 16 Mesh and boundary conditions for the problem of
contact belween an elastic disk and an elastic half-space.
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3. Moderate sliding frictionless contact of a nearly rigid disk with
a symmetric multilayer composite plate.

In the following subsections, the solution of each problem is dis-

cussed in detail and compared with independent solutions when available.

3.6.1 Contact between an Elastic Disk and an Elastic Half-space

The problem of frictionless contact between an elastic disk, and
an elastic half-space has been solved by Hertz [49]. The problem is
also solved in this section by the finite element method and results are
compared with the Hertz solution.

The mesh and boundary conditions are shown in Figure 16. The ma-
terial was isotropic .and the material properties for both the disk and
the half-space are E=1x103 psi. and v=,25. Quantities of interest are
the contact tractions, (T+AT) and £ho distributions of o, in the
half-space near the boundary (y=0) and near the plane of symmetry (x=0).

The solution is presented for the case of prescribed displacements
applied to the top of the disk. The prescribed displacements were ap-
plied in three increments. For the first increment equal to -.9698 in.
two elements are in contact, the second increment equal to -.148 in. has
four elements in c;ntact and the third increment equal to -.0942 in. has
five elements in contact.

Figure 17 illustrates the distribution of the contact traction,
(T+AT) along the zone of contact as they compare with the Hertz solu-
tion. The contact tractions calculated only at 2 point Gauss stations

of the contact element are shown in Figure 18. The 2x2 Gasuss stations

were shown in the previous chapter to be "optimal sampling points”. The

Lo

LA




105
magnitudes of the contact tractions calculated at these points ag}oe

very closely with the Hertz solution.

The contact surface traction are calculated by a second method us-
ing the stress distributions and the stress coefficients A8's assumed
within each plate element. The distribution of the contact tractions
are compared with the Hertz solution in Figure 19. Once again the dis-
tribution of contact traction agrees well with the Hertz solution.

Stresses in the half-space near the surface at y=0 are shown in
Figure 20. They are calculated from the plate elements at the 2x2 Gauss
stations nearest the y=0 boundary. The stresses within the half-space
near the surface are only slightly smaller than the tractions on the
surface as would be expected. The stress tends toward zero as x in-
creases. Stresses in the half-space near the plane of symmetry are
shown in Figure 21. They are also calculated at the 2x2 Gauss stations
in the plate elements. The stress is maximum at the surface and de-
creases to a minimum value as y decreases. The accurate prediction of
stress within the half-space for this problem shows the mesh is fine
enough so that one may expect good results for problems which have no

analytic solution.

TrevaTIv g AR S A T I N T A W e A




--------------------------

N —
-
N 106
. 60 T ® nodal values
> A 2 pt. Gauss station
: -0 - i
. exact
v
’<
‘w
2
]
c
o
‘e
dd
g 9,
- .
. b
- Jo
X -,
v
. 9!
e,
3
- C3)
U.
\
o .25 K .75 1.0 128
: | A ‘
: |
. x (in.) i
N ©
Figure 17 Contact traction (T+AT) distribution vs x for
contact between a disk and a half-space having identical
material properties. The displacements were applied in 3
increments. '
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Figure 18 Contact traction (T+AT) distribution wvs x
calculated at the 2 pt. Gauss stations along the contact
surface. The displacements were applies in 3 increments.
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| e —  exact

Figure 19 Distribution of the inplane normal stress, o, in
the half-space calculated along the surface y=0 vs x. The
displaceaents were applied in three increments.
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@ Predicted

Figure 21 Distribution of the inplane normal stress, o, in
the half-space calculated through the 2x2 Gauss stations
nearest the plane of symmetry vs y. Three increments of
applied displacement were used. Eg; x/Epgig~gpace™!:
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3.6.2 Contact between a Nearly Rigid Disk and an Elastic Half-space

The problem of frictionless contact between a nearly rigid disk,
under an applied load, and an elastic half-space can be solved using the
same Hertz solution described in the last subsection.

The mesh and boundary ;onditions are shown in Figure 16. The ma-
terials of the disk and elastic half-space are isotropic and the materi-
al properties are Edisk-l‘x107 psi., Ehalf-planc'l'x103 psi. and
"disk"half-plane"zs' The solution presented is for the case of
prescribed displacements at the top of the disk in three increments.
The magnitudes of the applied displacements were the same as those used
in the last example problem. They are -.0698 in., -.148 in., and -.0942
in. for s total of -.312 in. Quantities of interest are the contact
tractions, (T+AT) and the distributions of oy in the half-plane near
the boundary (y=0) and near the center (x=0).

Figure 22 shows the distribution of the contact tractions calculat-
ed and the distribution given by the Hertz solution. The pointwise dis-~
tribﬁtion of the contact tractions does not agree as well as the previ-
ous example with the Hertz solution although the solution calculated at
the 2 point Gauss stations shown in Figure 23 is just as accurate as in
the previous example. This serves to point out the importance of using
these "optimal sampling points"Ato calculate contact tractions.

The contact surface tractions are calculated by a second method us-
ing the stress distribution and stress coefficients A8's assumed within
each plate element. The distribution of the contact tractions is com—
- pared with the Hertz solution in Figure 24. This time the distribution

of the contact tractions agrees well with the Hertz solution.
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Figure 22 Contact traction, (T+AT) distribution vs x for
contact between a2 nearly rigid disk and an elastic half-
space. Three increments of applied displacement were used.
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N Figure 23 Contact tractions, , (T+AT) distribution vs x

calculated at the 2 pt. Gauss stations along the contact
surface, The displacements were applied in 3 increments.
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Figure 24 Distribution of the inplane normal stress, o, in
the half-space calculated along the surface y=0 vs x. The
displacements were  applied in three increments.
Egisk/Enalf-space™1000.
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Stresses in the half-plane near the surface at y=0 are shown in
Figure 25. They are calculated from the stress coefficients, A3 at the
2x2 Gauss stations nearest the y=0 boundary. The stresses within the
half-space near the surface are only slightly smaller that the tractions
on the surface as would be expected. The stress tends toward zero as x
increases. Stress in the half-plane near the plane of symmetry are

shown in Figure 26. They are also calculated from stress coefficients

at the 2x2 Gauss stations. The stress is maximum near the surface and

decreases to a minimum value as y decreases.
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Figure 26 Distribution of the inplane normal stress, o, in
the half-space calculated through the 2x2 Gauss stations
nearest the plane of symmetry vs y. Three increments of
applied displacement were used. Eg;,y/Epg)g-gpace™1000-
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3.6.3 Contact between a Nearly Rigid Disk and a Symmetric Multilayer
Composite Plate

The problem of frictionless contact between a nearly rigid disk,
under an'appliod displacement, and a symmetric thin multilayer composite
plate is solved in this subsection.

The mesh and boundary conditions are lhoﬁn in Figure 16. The ma-
terial of the disk is isotropic and the material properties are
E=2.x1010 psi. and v=,21. The plate is a 4~layer 90/0/0/90 cross-ply
( @ measured from the x—axis). The thickness, h of the plate and the
disk is equal to .02 in. Each layer is of equal thickness h/4, and lay-
er material properties are 511-20x106 psi., 522-2.1x106 psi.,
vi2®v23=.21, and Glz-.85x106. Magnitudes of the three incre-
ments of applioa displacement are -.05313 in., -.12009 in., and -.07802
in. (equal to a total applied displacement of -.25124 in.)

Quantities of interest are the contact tractions, (T+AT) and the
distributions of Ty in the plate near the boundary (y=0) and near the
plane of symmetry (x=0).

Figure 27 illustrates the distribution of the contact tractions
calculated using the finite element program. The solution calculated at
the 2 point Gauss stations is shown in Figure 28. Using the experience
gained in the last two examples, these are the best locations at which
to evaluate the distribution of contact tractions.

A weighted sum of the stress, %y in all the layers of the multi-
layer composite plate have been calculated along y=0 using the stress
distibutions assumed within each element. The distribution of stress

shown in Figure 29 is very close to the distribution of contact traction

calculated at the 2 point Gauss stations in Figure 28, although the
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Figure 27 Contact surface tractions, (T+AT) distribution vs
x for contact between a nearly rigid disk and a symmetric
multilayer composite plate. Three increments of applied
displacement were used.
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Figure 28 Contact tractions, (T+AT) distribution vs «x

calculated at the 2 pt. Gasuss stations along the contact

surface for the problem of contact between a nearly rigid

disk and a symmetric multilayer composite plate. The
" displacments were applied in 3 increments.
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stress distribution within the element is discontinuous at interelement
boundaries. The stress, Oy calculated along y=0 usi;g the element
stress distribution in each of layers 1 and 2 are shown in Figures 30
and 31 respectively.

A weighted sum of the stress in all the layers of the multilayer
composite plate near the surface at y-O-are shown in Figure 32. They
are calculated from the stress coefficients, AB at the 2x2 Gauss sta-
tions nearest the y=0 boundary. The stress, %y calculated at the 2x2
Gauss stations nearest the y=0 boundary are shown for layers ! and 2
separately in Figures 33 and 34. The stress tends toward zero as x in-
creases. Stresses in the multilayer composite plate near the plane of
symmetry are shown in Figure 35. They are also calculated from stress
coefficients at the 2x2 Gauss stations. The stress, oy calculated at

the 2x2 Gauss stations nearest the plane of symmetry are shown for lay-

ers 1 and 2 separately in Figures 36 and 37. The stress is maximum near

the surface and decreases to a minimum value as y decreases.
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Figure 29 Distribution of the inplane normal stress, ¢, in
the multilayer plate calculated along the contact surface
(y=0) wvs x. The displacments were applied in three
increments.
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Figure 31 Contact traction, (T+AT) distribution in layer 2
vs x calculated at the 2 pt. Gauss stations along the
contact surface for the problem of contact between a nearly
rigid disk and a symmetric multilayer plate. The
displacements were applied in 3 increments.
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Chapter IV

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

4.1 CONCLUSIONS

The purpose of this study has been to solve the problem of edge
contact between a nearly rigid disk and a multilayer laminated composite
plate. A suitable plate element has been formultated for this purpose
as well as the method to solve the contact portion of the problem.

The hybrid stress formulation for an isoparametric thin to moder-
ately thick multilayer laminated composite plate element has besn pre-
sented. The displacement behavior was characterized by laminate refer-
ence plane inplane and transverse displacements and laminste non-normal
cross—section rotations; as a result, the number of degrees of freedom
was independent of the number of layers. All components of stress were
included.

A thin to moderately thick multilayer laminated composite plate el-
ement (MQH3) was developed. Due to the excessive CPU time necessary to
calculate the stiffness of a single element, several unsuccessful
schemes were developed to decrease the CPU time . An element forasula-
tion for thin laminates was developed as s reduction of the moderately-
thick formulation by neglecting the contribution of transverse shear
stresses and normal stress to the internal complementary energy. Using

the reduced formulation, an algorithm was developed which decreased the

CPU time necessary to calculate the stiffness by a significant amount.

PR St i
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CPU time for the reduced element is essentially independent of the num-
ber of layers.

For thin laminates the performance of the two elements is essen-
tially identical. For thickness ratios h/L>.01, the more general ele-
ment is necessary to produce accurate results, but the reduced element
results in a large reduction in CPU time. The MQH3T element retains a
high degree of accuracy for thin plates having a thickness ratio less
than h/L=0.01. For the case of an angle-ply plate which is simply sup-
ported on all edges the results are very good and € has little effect on
the accuracy of the predictions. The poor results displayed for small &
in the case of a angle-ply plate which has been clamped on all edges are
thought to be due to a type of "material" aspect ratio effect.

The hybrid stress formulation for the analysis of laminate edge
contact problems as well as the procedure to locate the surface of con-
tact has been presented. A contacé surface was assumed between two con-
tacting bodies and was divided into contact elements. Attention was re-
stricted to cases of inplane displacements and contact which was uniform
in the through thickness direction.

Examples considered were the problem of contact between a disk and
a half-plane involving both elastic and nearly rigid disks, and isotrop-
ic and multilayer composite plates. Results of moderate sliding contact
are in very good agreement with Hertz solutions and can be considered
good enough to obtain stressez accurately. The problem of moderate
sliding frictionless contact of an elastic disk with an elastic semi-in-
finite half-space agreed very well with the Hertz distribution of con-
tact stress. The best distributions of contact tractions were obtained

at the 2 point Gauss stations. The results obtained from the example
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problems involving the semi-infinite half-space suggest that the mesh
was fine enough to obtain reasonable results for the problem of edge

contact between a disk and a thin multilayer composite plate.

4.2 SUGGESTIONS FOR FURTHER RESEARCH

Suggestion for further research include:

1. Efforts should be made to decrease the storage requirements i.e.
out-of-core solvers and use of disk storage, so that finer meshes
could be used to solve more complicated problems such a curved
boundaries.

2. Extension of the present program to include transverse displace-
ments and rotations.

3. Use of more sophisticated multilayer elements near the contact
surface which would include the possibility of cross—sectional

n
warping &t the edge of the laminate.

4. Inclusion of material and geometric nonlinearities.
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